scholarly journals Comparative Assessment of the Phytochemical Composition and Biological Activity of Extracts of Flowering Plants of Centaurea cyanus L., Centaurea jacea L., and Centaurea scabiosa L.

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1279
Author(s):  
Natalia Sharonova ◽  
Evgeny Nikitin ◽  
Dmitriy Terenzhev ◽  
Anna Lyubina ◽  
Syumbelya Amerhanova ◽  
...  

The data on the phytochemical composition and biological activity for flowering plant extracts of the genus Centaurea (Knapweed)—cornflower (Centaurea cyanus L.), brown knapweed (Centaurea jacea L.), and greater knapweed (Centaurea scabiosa L.), which are typical representatives of the flora in the middle belt of the Russian Federation, were obtained. For the first time, biologically active substances such as pyranone, coumaran (2,3-dihydrobenzofuran), and 5-hydroxymethylfurfural were identified in ethanol and methanol extracts of Centaurea scabiosa L. by gas chromatography–mass spectrometry. Catechol and α-amyrin were the major components of the ethanol extract from Centaurea cyanus L., and flavone was the major component of Centaurea jacea L. flower extract. The greatest antimicrobial activity against phytopathogens was detected in Centaurea scabiosa L. when extracting freshly harvested flower biomass with methyl tert-butyl ether at room temperature: the minimum inhibitory concentrations were 60–120 µg/mL, the minimum fungicidal concentration was 120 µg/mL, and the minimum bactericidal concentration was 250 µg/mL. The low antioxidant activity of the studied plant extracts was established using the maximum values of Centaurea jacea L. Ethanol extract of Centaurea cyanus L. flowers had low antimicrobial and antioxidant activity. The extracts showed no phytotoxicity to garden cress germination but inhibited the growth of juvenile plants, especially roots. The greatest phytotoxic effect was revealed with methyl tert-butyl ether, where the depression of growth indicators was 35% or more.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
E. S. Prasedya ◽  
A. Frediansyah ◽  
N. W. R. Martyasari ◽  
B. K. Ilhami ◽  
A. S. Abidin ◽  
...  

AbstractSample particle size is an important parameter in the solid–liquid extraction system of natural products for obtaining their bioactive compounds. This study evaluates the effect of sample particle size on the phytochemical composition and antioxidant activity of brown macroalgae Sargassum cristaefolium. The crude ethanol extract was extracted from dried powders of S.cristeafolium with various particle sizes (> 4000 µm, > 250 µm, > 125 µm, > 45 µm, and < 45 µm). The ethanolic extracts of S.cristaefolium were analysed for Total Phenolic Content (TPC), Total Flavonoid Content (TFC), phenolic compound concentration and antioxidant activities. The extract yield and phytochemical composition were more abundant in smaller particle sizes. Furthermore, the TPC (14.19 ± 2.08 mg GAE/g extract to 43.27 ± 2.56 mg GAE/g extract) and TFC (9.6 ± 1.8 mg QE/g extract to 70.27 ± 3.59 mg QE/g extract) values also significantly increased as particle sizes decreased. In addition, phenolic compounds epicatechin (EC), epicatechin gallate (ECG), epigallocatechin (EGC), and Epigallocatechin gallate (EGCG) concentration were frequently increased in samples of smaller particle sizes based on two-way ANOVA and Tukey’s multiple comparison analysis. These results correlate with the significantly stronger antioxidant activity in samples with smaller particle sizes. The smallest particle size (< 45 µm) demonstrated the strongest antioxidant activity based on DPPH, ABTS, hydroxyl assay and FRAP. In addition, ramp function graph evaluates the desired particle size for maximum phytochemical composition and antioxidant activity is 44 µm. In conclusion, current results show the importance of particle size reduction of macroalgae samples to increase the effectivity of its biological activity.


1994 ◽  
Vol 29 (4) ◽  
pp. 486-494 ◽  
Author(s):  
Naohito Uchida ◽  
Toshiaki Nakatsu ◽  
Shuko Hirabayashi ◽  
Atsushi Minami ◽  
Hiroki Fukuma ◽  
...  

1979 ◽  
Vol 15 (5) ◽  
pp. 338-340 ◽  
Author(s):  
L. M. Noreiko ◽  
S. A. Feigin ◽  
E. D. Radchenko ◽  
A. V. Agafonov ◽  
G. P. Klishina

Sign in / Sign up

Export Citation Format

Share Document