scholarly journals Chilling and Freezing Temperature Stress Differently Influence Glucosinolates Content in Brassica oleracea var. acephala

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1305
Author(s):  
Valentina Ljubej ◽  
Ivana Radojčić Redovniković ◽  
Branka Salopek-Sondi ◽  
Ana Smolko ◽  
Sanja Roje ◽  
...  

Brassica oleracea var. acephala is known to have a strong tolerance to low temperatures, but the protective mechanisms enabling this tolerance are unknown. Simultaneously, this species is rich in health-promoting compounds such as polyphenols, carotenoids, and glucosinolates. We hypothesize that these metabolites play an important role in the ability to adapt to low temperature stress. To test this hypothesis, we exposed plants to chilling (8 °C) and additional freezing (−8 °C) temperatures under controlled laboratory conditions and determined the levels of proline, chlorophylls, carotenoids, polyphenols, and glucosinolates. Compared with that of the control (21 °C), the chilling and freezing temperatures increased the contents of proline, phenolic acids, and flavonoids. Detailed analysis of individual glucosinolates showed that chilling increased the total amount of aliphatic glucosinolates, while freezing increased the total amount of indolic glucosinolates, including the most abundant indolic glucosinolate glucobrassicin. Our data suggest that glucosinolates are involved in protection against low temperature stress. Individual glucosinolate species are likely to be involved in different protective mechanisms because they show different accumulation trends at chilling and freezing temperatures.

2021 ◽  
Author(s):  
Shuhan Jiang ◽  
Dongjian Xia ◽  
Qian Dai ◽  
Yuxia Luo ◽  
Yao Chen ◽  
...  

Abstract Background: Brassica oleracea L. occupies an important position in the annual production of vegetables. But during winter Brassica oleracea L. often suffers from low temperatures and even sub-zero temperatures. Through transcriptome analysis and identification, the pathways involved in cold tolerance of Brassica oleracea L. were analyzed and candidate genes related to cold tolerance of Brassica oleracea L. were identified.Results: Under low temperature stress, a large number of significantly different genes were found in Zhonggan1229 (ZG, low temperature tolerance) and Yingchun (YN, low temperature sensitive). There were 3902 significantly up-regulated genes and 5309 significantly down-regulated genes in ZG, and 4253 significantly up-regulated genes and 5938 significantly down-regulated genes in YN. Among them, 1844 different genes are the specific different genes in ZG and 6089 genes are the common different genes to response the low temperature stress. By annotating the specific different genes in ZG, 26 of the top 30 enriched GO terms belonged to biological processes, 4 terms belonged to molecular functions. By annotating the common different genes, 23 GO terms belonged to biological processes, 1 GO term belonged to molecular functions, and 6 GO terms belonged to cellular components. Circadian rhythms of plants and Plant hormone signal transduction were not only significantly enriched in the two analyzed genes, but also the effects of low temperature stress were most significant. Among the unique different genes in ZG, 154 genes were annotated into transcription factor families, and 79 genes were up-regulated and 75 genes were down-regulated, the encoding of MYB-related proteins was the largest group. Among the different genes shared by the two varieties, 516 genes were annotated into corresponding transcription factor families, 211 genes were up-regulated and 296 genes were down-regulated, however, there were 4 genes that were up-regulated in ZG but down-regulated in YN, and 5 genes that were down-regulated in ZG but up-regulated in YN, the largest group was the protein encoding ERF.Conclusions: The results identified important genes, pathways, and transcription factors that respond to low temperature stress, provided cold tolerance gene resources for the subsequent cold tolerance breeding research of Brassica oleracea L..


2019 ◽  
Vol 26 (2) ◽  
pp. 280
Author(s):  
Penglei JIANG ◽  
Yingdi SHI ◽  
Yanwen HOU ◽  
Bingshe HAN ◽  
Junfang ZHANG

2014 ◽  
Vol 39 (1) ◽  
pp. 26-30 ◽  
Author(s):  
Yu-zhi QIN ◽  
Jue CHEN ◽  
Zhen XING ◽  
Chang-zheng HE ◽  
Xing-yao XIONG

Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 271
Author(s):  
Muhammad Imran ◽  
Asim Mahmood ◽  
Günter Neumann ◽  
Birte Boelt

Low temperature during germination hinders germination speed and early seedling development. Zn seed priming is a useful and cost-effective tool to improve germination rate and resistance to low temperature stress during germination and early seedling development. Spinach was tested to improve germination and seedling development with Zn seed priming under low temperature stress conditions. Zn priming increased seed Zn concentration up to 48 times. The multispectral imaging technique with VideometerLab was used as a non-destructive method to differentiate unprimed, water- and Zn-primed spinach seeds successfully. Localization of Zn in the seeds was studied using the 1,5-diphenyl thiocarbazone (DTZ) dying technique. Active translocation of primed Zn in the roots of young seedlings was detected with laser confocal microscopy. Zn priming of spinach seeds at 6 mM Zn showed a significant increase in germination rate and total germination under low temperature at 8 °C.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yumei Liu ◽  
Longqiang Bai ◽  
Mintao Sun ◽  
Jun Wang ◽  
Shuzhen Li ◽  
...  

Abstract Background Low temperature severely depresses the uptake, translocation from the root to the shoot, and metabolism of nitrate and ammonium in thermophilic plants such as cucumber (Cucumis sativus). Plant growth is inhibited accordingly. However, the availability of information on the effects of low temperature on nitrogen transport remains limited. Results Using non-invasive micro-test technology, the net nitrate (NO3−) and ammonium (NH4+) fluxes in the root hair zone and vascular bundles of the primary root, stem, petiole, midrib, lateral vein, and shoot tip of cucumber seedlings under normal temperature (NT; 26 °C) and low temperature (LT; 8 °C) treatment were analyzed. Under LT treatment, the net NO3− flux rate in the root hair zone and vascular bundles of cucumber seedlings decreased, whereas the net NH4+ flux rate in vascular bundles of the midrib, lateral vein, and shoot tip increased. Accordingly, the relative expression of CsNRT1.4a in the petiole and midrib was down-regulated, whereas the expression of CsAMT1.2a–1.2c in the midrib was up-regulated. The results of 15N isotope tracing showed that NO3−-N and NH4+-N uptake of the seedlings under LT treatment decreased significantly compared with that under NT treatment, and the concentration and proportion of both NO3−-N and NH4+-N distributed in the shoot decreased. Under LT treatment, the actual nitrate reductase activity (NRAact) in the root did not change significantly, whereas NRAact in the stem and petiole increased by 113.2 and 96.2%, respectively. Conclusions The higher net NH4+ flux rate in leaves and young tissues may reflect the higher NRAact in the stem and petiole, which may result in a higher proportion of NO3− being reduced to NH4+ during the upward transportation of NO3−. The results contribute to an improved understanding of the mechanism of changes in nitrate transportation in plants in response to low-temperature stress.


Sign in / Sign up

Export Citation Format

Share Document