scholarly journals Assessment of the Genetic Structure and Diversity of Soybean (Glycine max L.) Germplasm Using Diversity Array Technology and Single Nucleotide Polymorphism Markers

Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 68
Author(s):  
Abdulwahab S. Shaibu ◽  
Hassan Ibrahim ◽  
Zainab L. Miko ◽  
Ibrahim B. Mohammed ◽  
Sanusi G. Mohammed ◽  
...  

Knowledge of the genetic structure and diversity of germplasm collections is crucial for sustainable genetic improvement through hybridization programs and rapid adaptation to changing breeding objectives. The objective of this study was to determine the genetic diversity and population structure of 281 International Institute of Tropical Agriculture (IITA) soybean accessions using diversity array technology (DArT) and single nucleotide polymorphism (SNP) markers for the efficient utilization of these accessions. From the results, the SNP and DArT markers were well distributed across the 20 soybean chromosomes. The cluster and principal component analyses revealed the genetic diversity among the 281 accessions by grouping them into two stratifications, a grouping that was also evident from the population structure analysis, which divided the 281 accessions into two distinct groups. The analysis of molecular variance revealed that 97% and 98% of the genetic variances using SNP and DArT markers, respectively, were within the population. Genetic diversity indices such as Shannon’s diversity index, diversity and unbiased diversity revealed the diversity among the different populations of the soybean accessions. The SNP and DArT markers used provided similar information on the structure, diversity and polymorphism of the accessions, which indicates the applicability of the DArT marker in genetic diversity studies. Our study provides information about the genetic structure and diversity of the IITA soybean accessions that will allow for the efficient utilization of these accessions in soybean improvement programs, especially in Africa.

2020 ◽  
pp. 1-8
Author(s):  
Kehinde A. Adeboye ◽  
Olayinka E. Oyedeji ◽  
Ahmad M. Alqudah ◽  
Andreas Börner ◽  
Olusegun Oduwaye ◽  
...  

Abstract Investigating genetic structure and diversity is crucial for rice improvement strategies, including mapping quantitative trait loci with the potential for improved productivity and adaptation to the upland ecology. The present study elucidated the population structure and genetic diversity of 176 rice germplasm adapted to the upland ecology using 7063 genome-wide single nucleotide polymorphism (SNP) markers from the Diversity Array Technology (DArT)-based sequencing platform (DArTseq). The SNPs were reasonably distributed across the rice genome, ranging from 432 SNPs on chromosome 9 to 989 SNPs on chromosome 1. The minimum minor allele frequency was 0.05, while the average polymorphism information content and heterozygosity were 0.25 and 0.03, respectively. The model-based (Bayesian) population structure analysis identified two major groups for the studied rice germplasm. Analysis of molecular variance revealed that all (100%) of the genetic variance was attributable to differences within the population, and none was attributable to the population structure. The estimates of genetic differentiation (PhiPT = 0.001; P = 0.197) further showed a negligible difference among the population structures. The results indicated a high genetic exchange or gene flow (number of migrants, Nm = 622.65) and a substantial level of diversity (number of private alleles, Pa = 1.52 number of different alleles, Na = 2.67; Shannon's information index, I = 0.084; and percentage of polymorphic loci, %PPL = 55.9%) within the population, representing a valuable resource for rice improvement. The findings in this study provide a critical analysis of the genetic diversity of upland rice germplasm that would be useful for rice yield improvement. We suggested further breeding and genetic analyses.


Diversity ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 144
Author(s):  
Nohra Castillo Rodríguez ◽  
Xingbo Wu ◽  
María Isabel Chacón ◽  
Luz Marina Melgarejo ◽  
Matthew Wohlgemuth Blair

Orphan crops, which include many of the tropical fruit species used in the juice industry, lack genomic resources and breeding efforts. Typical of this dilemma is the lack of commercial cultivars of purple passion fruit, Passiflora edulis f. edulis, and of information on the genetic resources of its substantial semiwild gene pool. In this study, we develop single-nucleotide polymorphism (SNP) markers for the species and show that the genetic diversity of this fruit crop has been reduced because of selection for cultivated genotypes compared to the semiwild landraces in its center of diversity. A specific objective of the present study was to determine the genetic diversity of cultivars, genebank accession, and landraces through genotyping by sequencing (GBS) and to conduct molecular evaluation of a broad collection for the species P. edulis from a source country, Colombia. We included control genotypes of yellow passion fruit, P. edulis f. flavicarpa. The goal was to evaluate differences between fruit types and compare landraces and genebank accessions from in situ accessions collected from farmers. In total, 3820 SNPs were identified as informative for this diversity study. However, the majority distinguished yellow and purple passion fruit, with 966 SNPs useful in purple passion fruits alone. In the population structure analysis, purple passion fruits were very distinct from the yellow ones. The results for purple passion fruits alone showed reduced diversity for the commercial cultivars while highlighting the higher diversity found among landraces from wild or semi-wild conditions. These landraces had higher heterozygosity, polymorphism, and overall genetic diversity. The implications for genetics and breeding as well as evolution and ecology of purple passion fruits based on the extant landrace diversity are discussed with consideration of manual or pollinator-assisted hybridization of this species.


2021 ◽  
Vol 19 (1) ◽  
pp. 20-28
Author(s):  
Abush Tesfaye Abebe ◽  
Adesike Oladoyin Kolawole ◽  
Nnanna Unachukwu ◽  
Godfree Chigeza ◽  
Hailu Tefera ◽  
...  

AbstractSoybean (Glycine max (L.) Merr.) is an important legume crop with high commercial value widely cultivated globally. Thus, the genetic characterization of the existing soybean germplasm will provide useful information for enhanced conservation, improvement and future utilization. This study aimed to assess the extent of genetic diversity of soybean elite breeding lines and varieties developed by the soybean breeding programme of the International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria. The genetic diversity of 65 soybean genotypes was studied using single-nucleotide polymorphism (SNP) markers. The result revealed that 2446 alleles were detected, and the indicators for allelic richness and diversity had good differentiating power in assessing the diversity of the genotypes. The three complementary approaches used in the study grouped the germplasm into three major clusters based on genetic relatedness. The analysis of molecular variance revealed that 71% (P < 0.001) variation was due to among individual genotypes, while 11% (P < 0.001) was ascribed to differences among the three clusters, and the fixation index (FST) was 0.11 for the SNP loci, signifying moderate genetic differentiation among the genotypes. The identified private alleles indicate that the soybean germplasm contains diverse variability that is yet to be exploited. The SNP markers revealed high diversity in the studied germplasm and found to be efficient for assessing genetic diversity in the crop. These results provide valuable information that might be utilized for assessing the genetic variability of soybean and other legume crops germplasm by breeding programmes.


2020 ◽  
Vol 56 (No. 2) ◽  
pp. 62-70 ◽  
Author(s):  
Shahril Ab Razak ◽  
Nor Helwa Ezzah Nor Azman ◽  
Rahiniza Kamaruzaman ◽  
Shamsul Amri Saidon ◽  
Muhammad Fairuz Mohd Yusof ◽  
...  

Understanding genetic diversity is a main key for crop improvement and genetic resource management. In this study, we aim to evaluate the genetic diversity of the released Malaysian rice varieties using single nucleotide polymorphism (SNP) markers. A total of 46 released Malaysian rice varieties were genotyped using 1536 SNP markers to evaluate their diversity. Out of 1536 SNPs, only 932 SNPs (60.7%) represented high quality alleles, whereas the remainder either failed to amplify or had low call rates across the samples. Analysis of the 932 SNPs revealed that a total of 16 SNPs were monomorphic. The analysis of the SNPs per chromosome revealed that the average of the polymorphic information content (PIC) value ranged from 0.173 for chromosome 12 to 0.259 for chromosome 11, with an average of 0.213 per locus. The genetic analysis of the 46 released Malaysian rice varieties using an unweighted pair group method with arithmetic mean (UPGMA) dendrogram revealed the presence of two major groups. The analysis was supported by the findings from the STRUCTURE analysis which indicated the ∆K value to be at the highest peak at K = 2, followed by K = 4. The pairwise genetic distance of the shared alleles showed that the value ranged from 0.000 (MR159–MR167) to 0.723 (MRIA–Setanjung), which suggested that MR159 and MR167 were identical, and that the highest dissimilarity was detected between MRIA 1 and Setanjung. The results of the study will be very useful for the variety identification, the proper management and conservation of the genetic resources, and the exploitation and utilisation in future breeding programmes.


Diversity ◽  
2014 ◽  
Vol 6 (1) ◽  
pp. 88-101 ◽  
Author(s):  
Sukhjiwan Kaur ◽  
Noel Cogan ◽  
John Forster ◽  
Jeffrey Paull

Sign in / Sign up

Export Citation Format

Share Document