scholarly journals Natural Compounds That Modulate the Development of the Fungus Botrytis cinerea and Protect Solanum lycopersicum

Plants ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 111 ◽  
Author(s):  
Esteban D. Rosero-Hernández ◽  
Javier Moraga ◽  
Isidro G. Collado ◽  
Fernando Echeverri

Botrytis cinerea is the causal agent of gray mold disease and is responsible for the loss of millions of dollars in crops in worldwide. Currently, this pathogen exhibits increasing resistance to conventional fungicides; therefore, better control methods and novel compounds with a more specific mechanism of action but without biocidal effects, are required. In this work, several natural compounds to control B. cinerea were analyzed in vitro. Detected effects were dependent on the stage of fungus development, and 3-phenyl-1-propanol displayed the most potent inhibition of in vitro germination, germ tube development, and sporulation. However, it had lower protection of leaves and postharvest fruit in plant infection. Isoeugenol and 1-phenylethanol exhibited lower inhibition of in vitro germination and sporulation, but at the highest concentrations, they inhibited germ tube elongation. Although the lowest rates of foliage infection were recorded using isoeugenol and 3-phenyl-1-propanol, 1-phenylethanol significantly decreased the disease in postharvest tomato fruit, with an efficacy like Mancozeb, but at 18 times lower micromolar concentration. All compounds resulted in high cell viability after spores were removed from the treatment solution exhibited high cell viability, suggesting a non-biocidal effect. The diversity of in vitro and in-plant effects seems to indicate a different mechanism of action.

Plant Disease ◽  
2020 ◽  
Vol 104 (5) ◽  
pp. 1298-1304 ◽  
Author(s):  
Ting-ting Li ◽  
Jing-di Zhang ◽  
Jia-quan Tang ◽  
Zhi-cheng Liu ◽  
Ya-qian Li ◽  
...  

Tomato gray mold caused by Botrytis cinerea is one of the main diseases of tomato and significantly impacts the yield and quality of tomato fruit. The overuse of chemical fungicides has resulted in the development of fungicide-resistant strains. Biological control is becoming an alternative method for the control of plant diseases to replace or decrease the application of traditional synthetic chemical fungicides and genus Trichoderma is widely used as a biological agent for controlling tomato gray mold. Brassinolide (BR) is a plant-growth-promoting steroid. To enhance the efficiency and stability of Trichoderma activity against B. cinerea, an optimal combination of Trichoderma atroviride CCTCCSBW0199 and BR that controls B. cinerea infection in tomato was identified. Strain CCTCCSBW0199 was found to have antagonistic activity against B. cinerea both in vitro and in vivo. In addition, a fermented culture of chlamydospores and metabolites, or metabolites only of strain CCTCCSBW0199 also reduced growth of B. cinerea. BR reduced growth of B. cinerea and had no effect on the sporulation and growth of Trichoderma spp. An application of metabolites of a Trichoderma sp. + BR reduced gray mold on tomato leaves by approximately 70.0%. Furthermore, the activities of induced defense response-related enzyme, such as peroxidase, superoxide dismutase, catalase, and phenylalanine ammonia-lyase were increased in tomato plants treated with a Trichoderma sp. + BR. Our data suggested that applying a mix of metabolites of T. atroviride CCTCCSBW0199 + BR was effective at reducing gray mold of tomato and may lay a theoretical foundation for the development of novel biofungicides.


2017 ◽  
Vol 107 (3) ◽  
pp. 362-368 ◽  
Author(s):  
Wayne M. Jurick ◽  
Otilia Macarisin ◽  
Verneta L. Gaskins ◽  
Eunhee Park ◽  
Jiujiang Yu ◽  
...  

Botrytis cinerea causes gray mold and is an economically important postharvest pathogen of fruit, vegetables, and ornamentals. Fludioxonil-sensitive B. cinerea isolates were collected in 2011 and 2013 from commercial storage in Pennsylvania. Eight isolates had values for effective concentrations for inhibiting 50% of mycelial growth of 0.0004 to 0.0038 μg/ml for fludioxonil and were dual resistant to pyrimethanil and thiabendazole. Resistance was generated in vitro, following exposure to a sublethal dose of fludioxonil, in seven of eight dual-resistant B. cinerea isolates. Three vigorously growing B. cinerea isolates with multiresistance to postharvest fungicides were further characterized and found to be osmosensitive and retained resistance in the absence of selection pressure. A representative multiresistant B. cinerea strain caused decay on apple fruit treated with postharvest fungicides, which confirmed the in vitro results. The R632I mutation in the Mrr1 gene, associated with fludioxonil resistance in B. cinerea, was not detected in multipostharvest fungicide-resistant B. cinerea isolates, suggesting that the fungus may be using additional mechanisms to mediate resistance. Results from this study show for the first time that B. cinerea with dual resistance to pyrimethanil and thiabendazole can also rapidly develop resistance to fludioxonil, which may pose control challenges in the packinghouse environment and during long-term storage.


FLORESTA ◽  
2013 ◽  
Vol 43 (2) ◽  
pp. 225
Author(s):  
Miriam Machado Cunico ◽  
Celso Garcia Auer ◽  
Marlon Wesley Machado Cunico ◽  
Obdulio Gomes Miguel ◽  
Patricio Peralta Zamora ◽  
...  

 Extratos etanólicos de anestesia, Ottonia martiana Miq., foram reavaliados quanto à inibição do crescimento micelial dos fungos Cylindrocladium spathulatum (pinta-preta da erva-mate) e Botrytis cinerea (mofo-cinzento do eucalipto), por meio do planejamento fatorial. A ocorrência de decomposição de bioativos no processo de autoclavagem também foi investigada, por meio de teste de eficiência de extratos filtrados (filtro Millipore) e esterilizados (autoclave) no controle dos fitopatógenos, nas concentrações de 1, 10, 100 e 1000 ppm. Os extratos etanólicos filtrado e esterilizado inibiram o crescimento micelial dos fungos e foram mais ativos frente a B. cinerea.O extrato filtrado exibiu maior potencial antifúngico que o extrato esterilizado. O processo de esterilização por autoclavagem causou pequena decomposição dos bioativos presentes no extrato de anestesia.Palavras-chave: Anestesia; mofo-cinzento; pinta-preta. Abstract Fungitoxic potential of ethanolic extracts of anestesia in the control of phytopathogenic diseases. The antifungal potential of anestesia, Ottonia martiana Miq. was reassessed by factorial design, in vitro testing of fungal mycelial growth compared to the pathogenic isolates Cylindrocladium spathulatum, causal agent of black spot onyerba mate, and Botrytis cinerea causal agent of gray-mold on eucalypts. Occurrence of decomposition of bioactive of the autoclaving process was investigated using foliar detached test compared to the pathogens (1000 ppm). Ethanolic extracts - EBEtOH (filtered and autoclaved) inhibited the mycelial growth of C. spathulatum and B. cinerea (1000 ppm) and were more pronounced against B. cinerea (43.6 % and 68.9 %). EBEtOH filtered (0.22 µm) presented higher activity than EBEtOH autoclaved (C. spathulatum: 52.8 % and 43.6 %, B. cinerea: 68.9 % and 43.6 %), suggesting little decomposition ofbioactive after autoclaving. EBEtOH filtrate presented potential inhibition of 28 % in eucalypt leaves against B. cinerea.  Keywords: Ottonia martiana; black spot; gray-mold.


2001 ◽  
Vol 41 (5) ◽  
pp. 697 ◽  
Author(s):  
D. R. Beasley ◽  
D. C. Joyce ◽  
L. M. Coates ◽  
A. H. Wearing

Saprophytic bacteria, yeasts and filamentous fungi were isolated from Geraldton waxflower flowers and screened to identify potential antagonism towards Botrytis cinerea. Isolates from other sources (e.g. avocado) were also tested. Isolates were initially screened in vitro for inhibition of B. cinerea conidial germination, germ tube elongation and mycelial growth. The most antagonistic bacteria, yeasts and fungi were selected for further testing on detached waxflower flowers. Conidia of the pathogen were mixed with conidia or cells of the selected antagonists, co-inoculated onto waxflower flowers, and the flowers were sealed in glass jars and incubated at 20˚C. The number of days required for the pathogen to cause flower abscission was determined. The most antagonistic bacterial isolate, Pseudomonas sp. 677, significantly reduced conidial germination and retarded germ tube elongation of B. cinerea. None of the yeast or fungal isolates tested was found to significantly reduce conidial germination or retard germ tube elongation, but several significantly inhibited growth of B. cinerea. Fusarium sp., Epicoccum sp. and Trichoderma spp. were the most antagonistic of these isolates. Of the isolates tested on waxflower, Pseudomonas sp. 677 was highly antagonistic towards B. cinerea and delayed waxflower abscission by about 3 days. Trichoderma harzianum also significantly delayed flower abscission. However, as with most of the fungal antagonists used, inoculation of waxflower flowers with this isolate resulted in unsightly mycelial growth.


FLORESTA ◽  
2013 ◽  
Vol 43 (1) ◽  
pp. 145 ◽  
Author(s):  
José Antonio Sbravatti Junior ◽  
Celso Garcia Auer ◽  
Ida Chapaval Pimentel ◽  
Álvaro Figueredo dos Santos ◽  
Bruno Schultz

   O Eucalyptus benthamii é uma das principais espécies de eucalipto plantadas na região Sul do Brasil, por sua resistência a geadas e por seu uso na produção florestal de madeira para fins energéticos. Na produção de mudas, uma das principais doenças ocorrentes em viveiros é o mofo-cinzento, causado pelo fungo Botrytis cinerea. Uma das alternativas para o controle dessa doença é o controle biológico com fungos endofíticos, os quais podem competir com os patógenos foliares de mudas de eucalipto. O objetivo deste trabalho foi isolar os fungos endofíticos provenientes de mudas de E. benthamii, identificá-los e selecioná-los para o controle de B. cinerea. Eles foram isolados do interior de tecidos vegetais desinfectados, identificados de acordo com critérios macro e micromorfológicos e classificados a partir de testes de controle biológico in vitro. Os resultados evidenciaram o potencial antagonista dos fungos Aspergillus sp., Penicillium sp. e Trichoderma sp. Nenhum desses fungos causou lesões em mudas de E. benthamii.Palavras-chave: Mofo-cinzento; eucalipto; viveiro.AbstractIn vitro selection of endophytes for biological control of Botrytis cinerea in Eucalyptus benthamii. Eucalyptus benthamii is one of the main eucalypt species planted in Southern Brazil, due to its resistance to frost and its use in the production of forest wood for energy purposes. During the production of seedlings, the main disease occurring in forest nurseries is gray-mold caused by the fungus Botrytis cinerea. One alternative for control this disease is biological control with fungal endophytes, which can compete with the foliar pathogens of eucalypt seedlings. The objective of this study was to isolate endophytic fungi from seedlings of Eucalyptus benthamii, identify and select them for B. cinerea control. These were isolated from the interior of disinfected plant tissues, identified according to macro and micromorphological criteria, and based on tests of biological control in vitro. The results revealed the potential antagonist of Aspergillus sp., Penicillium sp. and Trichoderma sp. No fungi caused lesions in E. benthamii seedlings.Keywords: Gray-mold; eucalypt; nursery.    


Mycologia ◽  
2010 ◽  
Vol 102 (5) ◽  
pp. 1134-1140 ◽  
Author(s):  
James W. Buck ◽  
Weibo Dong ◽  
Daren S. Mueller

2011 ◽  
Vol 101 (12) ◽  
pp. 1433-1445 ◽  
Author(s):  
Anne-Sophie Walker ◽  
Angélique Gautier ◽  
Johann Confais ◽  
Daniel Martinho ◽  
Muriel Viaud ◽  
...  

Botrytis cinerea is a major crop pathogen infesting >220 hosts worldwide. A cryptic species has been identified in some French populations but the new species, B. pseudocinerea, has not been fully delimited and established. The aim of this study was to distinguish between the two species, using phylogenetic, biological, morphological, and ecological criteria. Multiple gene genealogies confirmed that the two species belonged to different, well-supported phylogenetic clades. None of the morphological criteria tested (spore size, germination rate, or mycelial growth) was able to discriminate between these two species. Sexual crosses between individuals from the same species and different species were carried out. Only crosses between individuals from the same species were successful. Moreover, population genetics analysis revealed a high level of diversity within each species and a lack of gene flow between them. Finally, a population survey over time showed that B. cinerea was the predominant species but that B. pseudocinerea was more abundant in spring, on floral debris. This observation could not be explained by temperature adaptation in tests carried out in vitro or by aggressiveness on tomato or bean leaves. This study clearly establishes that B. cinerea and B. pseudocinerea constitute a complex of two cryptic species living in sympatry on several hosts, including grapevine and blackberry. We propose several biological or molecular tools for unambiguous differentiation between the two species. B. pseudocinerea probably makes a negligible contribution to gray mold epidemics on grapevine. This new species has been deposited in the MycoBank international database.


1990 ◽  
Vol 41 (3) ◽  
pp. 479 ◽  
Author(s):  
PJ Ellison ◽  
BR Cullis ◽  
RW Bambach ◽  
PF Kable

The effect of temperature on in vitro germination and germ tube growth of urediniospores of Tranzschelia discolor was studied over time under constant temperature conditions. Studies were carried out on 1% water agar in the dark at 3�C, 5�C, 8�C, 10�C, 15�C, 20�C, 25�C, 28�C, 30�C and 32�C. Germination was observed at all temperatures between 5 and 30'C, and occurred rapidly over most of this range. At 2 h, germination exceeded 80% at temperatures between 10 and 28�C, and this level was reached at 3 h at 8�C. Germination at 5 and 30�C was much reduced and at 7 h reached only 44% and 38% respectively. Germ tube growth occurred most vigorously at 15 and 20�C, reaching lengths in excess of 500 8m at 9 h. The optimum range was narrower than that for germination, and growth was reduced or poor at 8�C, 10�C, 25�C and 28�C, which were favourable temperatures for germination. Average germ tube lengths at 9 h at these temperatures were 55, 245, 273 and 62 8m, respectively. Three-dimensional models were derived relating germination and germ tube growth to time and temperature.


2001 ◽  
Vol 91 (12) ◽  
pp. 1172-1180 ◽  
Author(s):  
Linda Gordon Hjeljord ◽  
Arne Stensvand ◽  
Arne Tronsmo

The effect of preliminary nutrient activation on the ability of conidia of the antagonist Trichoderma harzianum (atroviride) P1 to suppress Botrytis cinerea was investigated in laboratory, greenhouse, and field trials. Preliminary nutrient activation at 21°C accelerated subsequent germination of the antagonist at temperatures from 9 to 21°C; at ≥18°C, the germination time of preactivated T. harzianum P1 conidia did not differ significantly from that of B. cinerea. When coinoculated with B. cinerea, concentrated inocula of preactivated but ungerminated T. harzianum P1 conidia reduced in vitro germination of the pathogen by ≥87% at 12 to 25°C; initially quiescent conidia achieved this level of suppression only at 25°C. Application of quiescent T. harzianum P1 conidia to detached strawberry flowers in moist chambers reduced infection by B. cinerea by ≥85% at 24°C, but only by 35% at 12°C. Preactivated conidia reduced infection by ≥60% at 12°C. Both quiescent and preactivated conidia significantly reduced latent infection in greenhouse-grown strawberries at a mean temperature of 19°C, whereas only preactivated conidia were effective in the field at a mean temperature of 14°C on the day of treatment application. An antagonistic mechanism based on initiation of germination in sufficiently concentrated inocula suggests that at suboptimal temperatures the efficacy of Trichoderma antagonists might be improved by conidia activation prior to application.


Plant Disease ◽  
2016 ◽  
Vol 100 (10) ◽  
pp. 2057-2061 ◽  
Author(s):  
Madeline E. Dowling ◽  
Meng-Jun Hu ◽  
Linus T. Schmitz ◽  
Jennifer R. Wilson ◽  
Guido Schnabel

Polyoxin D is a Fungicide Resistance Action Committee (FRAC) code 19 fungicide that was recently registered for gray mold control of strawberry in the United States. In this study, we determined the sensitivity to polyoxin D zinc salt (hereafter, polyoxin D) of Botrytis cinerea isolates from 41 commercial strawberry farms in South Carolina, North Carolina, Maryland, Virginia, and Ohio and investigated the fitness of sensitive (S) and reduced sensitive (RS) isolates. Relative mycelial growth ranged between 0 and over 100% on malt extract agar amended with a discriminatory dose of polyoxin D at 5 μg/ml. Isolates that grew more than 70% at that dose were designated RS and were found in three of the five states. The 50% effective dose (EC50) values of three S and three RS isolates ranged from 0.59 to 2.27 and 4.6 to 5.8 μg/ml, respectively. The three RS isolates grew faster on detached tomato fruit treated with Ph-D WDG at recommended label dosage than S isolates (P < 0.008). In all, 25 randomly selected RS isolates exhibited reduced sporulation ability (P < 0.0001) and growth rate (P < 0.0001) but increased production of sclerotia (P < 0.0386) compared with 25 S isolates. Of 10 isolates tested per phenotype, the number of RS isolates producing sporulating lesions on apple, tomato, and strawberry was significantly lower compared with S isolates (P < 0.0001 for each fruit type). The results of this study indicate that resistance management is necessary for fungicides containing polyoxin D. To our knowledge, this is the first study demonstrating reduced sensitivity to FRAC 19 fungicides in B. cinerea isolates from the United States.


Sign in / Sign up

Export Citation Format

Share Document