scholarly journals Interaction of Huanglongbing and Foliar Applications of Copper on Water Relations of Citrus sinensis cv. Valencia

Plants ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 298 ◽  
Author(s):  
Said A. Hamido ◽  
Robert C. Ebel ◽  
Kelly T. Morgan

The following study was conducted to determine the impact of frequent foliar Cu applications on water relations of Huanglongbing (HLB)-affected Citrus sinensis cv. ‘Valencia’. HLB in Florida is putatively caused by Candidatus Liberibacter asiaticus that is vectored by the Asian citrus psyllid. The experiment was conducted in a psyllid-free greenhouse with trees grown in Immokalee fine sand soil with the trees well-maintained to promote health. Cu was applied to the foliage at 0×, 0.5×, 1×, and 2× the commercially recommended rates, which were 0, 46, 92, and 184 mM, respectively, with applications made 3× in both 2016 and 2017. Previous studies indicate that HLB causes roots to decline before the canopy develops symptoms, which increases the ratio between the evaporative surface area of the canopy to the uptake surface area of roots and increases the hydraulic strain within the tree. In the current study, overall growth was suppressed substantially by HLB and Cu treatments but the ratio between evaporative surface area (leaf surface area) and the uptake surface area of roots (feeder root surface area) was not affected by either treatment. Stem water potential (Ψxylem), which was used as a measure of plant water deficits and the hydraulic strain within the tree, was significantly 13% lower for HLB-affected trees than the non-HLB controls but were not affected by Cu treatments. All Ψxylem measurements were in a range typical of well-watered trees conditions. Stomatal conductance (ks) and root and soil resistances (Rr+s) were not affected by HLB and Cu. The results of this experiment suggest that tree leaf area and feeder roots are reduced when the trees are affected by HLB or are treated with foliar Cu applications such that plant water deficits are not significantly different over that of the controls.

2021 ◽  
Vol 13 (9) ◽  
pp. 17
Author(s):  
T. T. Liu ◽  
J. R. Shao ◽  
L. Shen ◽  
X. Y. Wang ◽  
Tayier Tuerti ◽  
...  

In Xinjiang Uygur Autonomous Region of China, we conducted an experimental study to evaluate the root morphology and crop yield for the intercropping of maize and cotton. Due to the shading effect of maize and the reduced root surface area of cotton root system, intercropped cotton yield was smaller (14.7%) than monoculture cotton yield. By contrast, intercropped maize with cotton yield was higher than monoculture maize yield. Compared with typical production of each crop separately, intercropping of maize and cotton showed several benefits: increased the land utilization rate, with a land equivalent ratio (LER) greater than 1; and increased the root length, root surface area, and light interception in maize, which contributed to an increase in maize yield.


2018 ◽  
Vol 28 (5) ◽  
pp. 629-636 ◽  
Author(s):  
Matthew B. Bertucci ◽  
David H. Suchoff ◽  
Katherine M. Jennings ◽  
David W. Monks ◽  
Christopher C. Gunter ◽  
...  

Grafting of watermelon (Citrullus lanatus) is an established production practice that provides resistance to soilborne diseases or tolerance to abiotic stresses. Watermelon may be grafted on several cucurbit species (interspecific grafting); however, little research exists to describe root systems of these diverse rootstocks. A greenhouse study was conducted to compare root system morphology of nine commercially available cucurbit rootstocks, representing four species: pumpkin (Cucurbita maxima), squash (Cucurbita pepo), bottle gourd (Lagenaria siceraria), and an interspecific hybrid squash (C. maxima × C. moschata). Rootstocks were grafted with a triploid watermelon scion (‘Exclamation’), and root systems were compared with nongrafted (NG) and self-grafted (SG) ‘Exclamation’. Plants were harvested destructively at 1, 2, and 3 weeks after transplant (WAT), and data were collected on scion dry weight, total root length (TRL), average root diameter, root surface area, root:shoot dry-weight ratio, root diameter class proportions, and specific root length. For all response variables, the main effect of rootstock and rootstock species was significant (P < 0.05). The main effect of harvest was significant (P < 0.05) for all response variables, with the exception of TRL proportion in diameter class 2. ‘Ferro’ rootstock produced the largest TRL and root surface area, with observed values 122% and 120% greater than the smallest root system (‘Exclamation’ SG), respectively. Among rootstock species, pumpkin produced the largest TRL and root surface area, with observed values 100% and 82% greater than those of watermelon, respectively. These results demonstrate that substantial differences exist during the initial 3 WAT in root system morphology of rootstocks and rootstock species available for watermelon grafting and that morphologic differences of root systems can be characterized using image analysis.


Plant Methods ◽  
2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Yu Liu ◽  
Ji Qian ◽  
Xin Yang ◽  
Bao Di ◽  
Juan Zhou

Abstract Background Traditional measurements of apple seedling roots often rely on manual measurements and existing root scanners on the market. Manual measurement requires a lot of labor and time, and subjective reasons may cause the uncertainty of data; root scanners have limited scanning size and expensive. In case of fruit roots, coverage and occlusion issues will occur, resulting in inaccurate results, but our research solved this problem. Results The background plate was selected according to the color of the seedling roots; the image of the roots of the collected apple seedlings was preprocessed with Vision Development Module by combining image and Labview. The root surface area, average root diameter, root length and root volume of apple seedlings were measured by combining root characteristic parameters algorithm. In order to verify the effectiveness of the proposed method, a set of measurement system for root morphology of apple seedlings was designed, and the measurement result was compared with the Canadian root system WinRHIZO 2016 (Canada). With application of SPSS v22.0 analysis, the significance P > 0.01 indicated that the difference was not significant. The relative error of surface area was less than 0.5%. The relative error of the average diameter and length of the root system was less than 0.1%, and the relative error of the root volume was less than 0.2%. Conclusions It not only proved that the root surface area, average root diameter, root length and root volume of apple seedlings could be accurately measured by the method described herein, which was handy in operation, but also reduced the cost by 80–90% compared with the conventional scanner.


Horticulturae ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 39 ◽  
Author(s):  
Pamela A. Schwartz ◽  
Tyler S. Anderson ◽  
Michael B. Timmons

Aquaponic systems are becoming more prevalent and have led to accurate mass and energy balance models that allow nutrient utilization to be maximized and plant and fish systems to be coupled or complimentary. Such models still do not address the potential of using the plant side as both the primary nitrification system and as a sink for the nitrate being produced from the fish system. However, using the plants as the nitrification system for the fish waste requires a better understanding and quantification of the nitrification capacity of the plant system. A series of experiments were conducted using butterhead lettuce (Lactuca sativa, cv. Flandria) in deep water culture rafts. Plants were grown under two growing conditions and were evaluated based upon harvestable weight. Treatment 1 (H5) consisted of a standard hydroponic nutrient solution maintained at pH 5.8, while treatment 2 (A7) consisted of an aquaponic waste solution maintained at pH 7.0. The aquaponic conditions were created from a fish rearing system using koi (Cyprinus carpio) that was continuously recirculated between the designated plant tubs and the fish tank with an in-line bead filter to capture and mineralize fish solids. The total root surface area was not significantly different between treatments, but the ratio of root surface area to root fresh weight was different, suggesting that aquaponic roots are finer than hydroponic roots. Predictive equations were developed to correlate root surface area to shoot or root fresh weight, which can be used to design the nitrification component for a recirculating aquaculture system (RAS), as part of an integrated aquaponic system.


Sign in / Sign up

Export Citation Format

Share Document