scholarly journals Magnesium-Deficiency Effects on Pigments, Photosynthesis and Photosynthetic Electron Transport of Leaves, and Nutrients of Leaf Blades and Veins in Citrus sinensis Seedlings

Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 389 ◽  
Author(s):  
Ye ◽  
Chen ◽  
Deng ◽  
Yang ◽  
Lai ◽  
...  

Citrus sinensis seedlings were irrigated with nutrient solution at a concentration of 0 (Mg-deficiency) or 2 (Mg-sufficiency) mM Mg (NO3)2 for 16 weeks. Mg-deficiency-induced interveinal chlorosis, vein enlargement and corkiness, and alterations of gas exchange, pigments, chlorophyll a fluorescence (OJIP) transients and related parameters were observed in middle and lower leaves, especially in the latter, but not in upper leaves. Mg-deficiency might impair the whole photosynthetic electron transport, including structural damage to thylakoids, ungrouping of photosystem II (PSII), inactivation of oxygen-evolving complex (OEC) and reaction centers (RCs), increased reduction of primary quinone electron acceptor (QA) and plastoquinone pool at PSII acceptor side and oxidation of PSI end-electron acceptors, thus lowering energy transfer and absorption efficiency and the transfer of electrons to the dark reactions, hence, the rate of CO2 assimilation in Mg-deficiency middle and lower leaves. Although potassium, Mg, manganese and zinc concentration in blades displayed a significant and positive relationship with the corresponding element concentration in veins, respectively, great differences existed in Mg-deficiency-induced alterations of nutrient concentrations between leaf blades and veins. For example, Mg-deficiency increased boron level in the blades of upper leaves, decreased boron level in the blades of lower leaves, but did not affect boron level in the blades of middle leaves and veins of upper, middle and lower leaves. To conclude, Mg-deficiency-induced interveinal chlorosis, vein enlargement, and corkiness, and alterations to photosynthesis and related parameters increased with increasing leaf age. Mg-deficiency-induced enlargement and corkiness of veins were not caused by Mg-deficiency-induced boron-starvation.

2020 ◽  
Vol 40 (9) ◽  
pp. 1277-1291 ◽  
Author(s):  
Xin Ye ◽  
Xu-Feng Chen ◽  
Li-Ya Cai ◽  
Ning-Wei Lai ◽  
Chong-Ling Deng ◽  
...  

Abstract Little is known about the physiological and molecular mechanisms underlying magnesium (Mg)-deficiency-induced enlargement, cracking and lignification of midribs and main lateral veins of Citrus leaves. Citrus sinensis (L.) Osbeck seedlings were irrigated with nutrient solution at a concentration of 0 (Mg-deficiency) or 2 (Mg-sufficiency) mM Mg(NO3)2 for 16 weeks. Enlargement, cracking and lignification of veins occurred only in lower leaves, but not in upper leaves. Total soluble sugars (glucose + fructose + sucrose), starch and cellulose concentrations were less in Mg-deficiency veins of lower leaves (MDVLL) than those in Mg-sufficiency veins of lower leaves (MSVLL), but lignin concentration was higher in MDVLL than that in MSVLL. However, all four parameters were similar between Mg-deficiency veins of upper leaves (MDVUL) and Mg-sufficiency veins of upper leaves (MSVUL). Using label-free, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, we identified 1229 and 492 differentially abundant proteins (DAPs) in MDVLL vs MSVLL and MDVUL vs MSVUL, respectively. Magnesium-deficiency-induced alterations of Mg, nonstructural carbohydrates, cell wall components, and protein profiles were greater in veins of lower leaves than those in veins of upper leaves. The increased concentration of lignin in MDVLL vs MSVLL might be caused by the following factors: (i) repression of cellulose and starch accumulation promoted lignin biosynthesis; (ii) abundances of proteins involved in phenylpropanoid biosynthesis pathway, hormone biosynthesis and glutathione metabolism were increased; and (iii) the abundances of the other DAPs [viz., copper/zinc-superoxide dismutase, ascorbate oxidase (AO) and ABC transporters] involved in lignin biosynthesis were elevated. Also, the abundances of several proteins involved in cell wall metabolism (viz., expansins, Rho GTPase-activating protein gacA, AO, monocopper oxidase-like protein and xyloglucan endotransglucosylase/hydrolase) were increased in MDVLL vs MSVLL, which might be responsible for the enlargement and cracking of leaf veins.


2020 ◽  
Author(s):  
Xin Ye ◽  
Hui-Yu Huang ◽  
Feng-Lin Wu ◽  
Li-Ya Cai ◽  
Ning-Wei Lai ◽  
...  

Abstract Citrus sinensis (L.) Osbeck seedlings were fertigated with nutrient solution containing 2 [magnesium (Mg)-sufficiency] or 0 mM (Mg-deficiency) Mg(NO3)2 for 16 weeks. Thereafter, RNA-Seq was used to investigate Mg-deficiency-responsive genes in the veins of upper and lower leaves in order to understand the molecular mechanisms for Mg-deficiency-induced vein lignification, enlargement and cracking, which appeared only in the lower leaves. In this study, 3065 upregulated and 1220 downregulated, and 1390 upregulated and 375 downregulated genes were identified in Mg-deficiency veins of lower leaves (MDVLL) vs Mg-sufficiency veins of lower leaves (MSVLL) and Mg-deficiency veins of upper leaves (MDVUL) vs Mg-sufficiency veins of upper leaves (MSVUL), respectively. There were 1473 common differentially expressed genes (DEGs) between MDVLL vs MSVLL and MDVUL vs MSVUL, 1463 of which displayed the same expression trend. Magnesium-deficiency-induced lignification, enlargement and cracking in veins of lower leaves might be related to the following factors: (i) numerous transciption factors and genes involved in lignin biosynthesis pathways, regulation of cell cycle and cell wall metabolism were upregulated; and (ii) reactive oxygen species, phytohormone and cell wall integrity signalings were activated. Conjoint analysis of proteome and transcriptome indicated that there were 287 and 56 common elements between DEGs and differentially abundant proteins (DAPs) identified in MDVLL vs MSVLL and MDVUL vs MSVUL, respectively, and that among these common elements, the abundances of 198 and 55 DAPs matched well with the transcript levels of the corresponding DEGs in MDVLL vs MSVLL and MDVUL vs MSVUL, respectively, indicating the existence of concordances between protein and transcript levels.


2019 ◽  
Vol 20 (13) ◽  
pp. 3129 ◽  
Author(s):  
Yang ◽  
Zhou ◽  
Wang ◽  
Wu ◽  
Ye ◽  
...  

Magnesium (Mg) deficiency is one of the major constraining factors that limit the yield and quality of agricultural products. Uniform seedlings of the Citrus sinensis were irrigated with Mg deficient (0 mM MgSO4) and Mg sufficient (1 mM MgSO4) nutrient solutions for 16 weeks. CO2 assimilation, starch, soluble carbohydrates, TBARS content and H2O2 production were measured. Transcriptomic analysis of C. sinensis leaves was performed by Illumina sequencing. Our results showed that Mg deficiency decreased CO2 assimilation, but increased starch, sucrose, TBARS content and H2O2 production in C. sinensis leaves. A total of 4864 genes showed differential expression in response to Mg deficiency revealed by RNA-Seq and the transcriptomic data were further validated by real-time quantitative PCR (RT-qPCR). Gene ontology (GO) enrichment analysis indicated that the mechanisms underlying Mg deficiency tolerance in C. sinensis may be attributed to the following aspects: a) enhanced microtubule-based movement and cell cycle regulation; b) elevated signal transduction in response to biotic and abiotic stimuli; c) alteration of biological processes by tightly controlling phosphorylation especially protein phosphorylation; d) down-regulation of light harvesting and photosynthesis due to the accumulation of carbohydrates; e) up-regulation of cell wall remodeling and antioxidant system. Our results provide a comprehensive insight into the transcriptomic profile of key components involved in the Mg deficiency tolerance in C. sinensis and enrich our understanding of the molecular mechanisms by which plants adapted to a Mg deficient condition.


1980 ◽  
Vol 35 (9-10) ◽  
pp. 770-775 ◽  
Author(s):  
E. F. Elstner ◽  
H. P. Fischer ◽  
W. Osswald ◽  
G. Kwiatkowski

Abstract Oxygen reduction by chloroplast lamellae is catalyzed by low potential redox dyes with E′0 values between -0 .3 8 V and -0 .6 V. Compounds of E′0 values of -0 .6 7 V and lower are inactive. In subchloroplast particles with an active photosystem I but devoid of photosynthetic electron transport between the two photosystems, the active redox compounds enhance chlorophyll bleaching, superoxide formation and ethane production independent on exogenous substrates or electron donors. The activities of these compounds decrease with decreasing redox potential, with one exception: 1-methyl-4,4′-bipyridini urn bromide with an E′0 value of lower -1 V (and thus no electron acceptor of photosystem I in chloroplast lamellae with intact electron transport) stimulates light dependent superoxide formation and unsaturated fatty acid peroxidation in sub­ chloroplast particles, maximal rates appearing after almost complete chlorophyll bleaching. Since this activity is not visible with compounds with redox potentials below -0 .6 V lacking the nitrogen atom at the 1-position of the pyridinium substituent, we assume that 1 -methyl-4,4′-bi-pyridinium bromide is “activated” by a yet unknown light reaction.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 276
Author(s):  
Wanying Chen ◽  
Bo Jia ◽  
Junyu Chen ◽  
Yujiao Feng ◽  
Yue Li ◽  
...  

The mutual shading among individual field-grown maize plants resulting from high planting density inevitably reduces leaf photosynthesis, while regulating the photosynthetic transport chain has a strong impact on photosynthesis. However, the effect of high planting density on the photosynthetic electron transport chain in maize currently remains unclear. In this study, we simultaneously measured prompt chlorophyll a fluorescence (PF), modulated 820 nm reflection (MR) and delayed chlorophyll a fluorescence (DF) in order to investigate the effect of high planting density on the photosynthetic electron transport chain in two maize hybrids widely grown in China. PF transients demonstrated a gradual reduction in their signal amplitude with increasing planting density. In addition, high planting density induced positive J-step and G-bands of the PF transients, reduced the values of PF parameters PIABS, RC/CSO, TRO/ABS, ETO/TRO and REO/ETO, and enhanced ABS/RC and N. MR kinetics showed an increase of their lowest point with increasing high planting density, and thus the values of MR parameters VPSI and VPSII-PSI were reduced. The shapes of DF induction and decay curves were changed by high planting density. In addition, high planting density reduced the values of DF parameters I1, I2, L1 and L2, and enhanced I2/I1. These results suggested that high planting density caused harm on multiple components of maize photosynthetic electron transport chain, including an inactivation of PSII RCs, a blocked electron transfer between QA and QB, a reduction in PSI oxidation and re-reduction activities, and an impaired PSI acceptor side. Moreover, a comparison between PSII and PSI activities demonstrated the greater effect of plant density on the former.


Sign in / Sign up

Export Citation Format

Share Document