scholarly journals United Forces of Botanical Oils: Efficacy of Neem and Karanja Oil against Colorado Potato Beetle under Laboratory Conditions

Plants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 608 ◽  
Author(s):  
Kateřina Kovaříková ◽  
Roman Pavela

Neem and karanja oil are the most promising botanical insecticides in crop protection nowadays. Given that information about the insecticidal abilities of these oils is lacking, the aim was to explore the effects of neem and karanja oil binary mixtures. The insecticidal activity of NeemAzal T/S (Trifolio-M GmbH, Lahnau, Germany) (neem oil), Rock Effect (Agro CS a.s., Česká Skalice, Czech Republic) (karanja oil), and their binary mixes (at 1:1, 1:2, and 2:1 volume ratios) against the larvae of the Colorado potato beetle (CPB; Leptinotarsa decemlineata) was studied. In our bioassays, a synergistic effect of the mixtures, which was dose-dependent, was observed for the first time against this pest. The most effective blend was the 1:1 ratio. Its efficacy was more or less the same as, or even greater than, the neem oil alone. The LC50 of neem oil two days after application was (0.075 g·L−1) and the LC50 of the mixture was (0.065 g·L−1). The LC50 of karanja oil was (0.582 g·L−1), which was much higher than the LC50 of neem oil. The LC90 of neem oil five days after application was (0.105 g·L−1) and the LC90 of the mixture was (0.037 g·L−1). The LC90 of karanja oil was (1.032 g·L−1). The results demonstrate that it is possible to lower the doses of both oils and get improved efficacy against CPB larvae; nevertheless, further verification of the results in field conditions is necessary.

Author(s):  
Eva Kocmánková ◽  
Miroslav Trnka ◽  
Daniela Semerádová ◽  
Zdeněk Žalud ◽  
Martin Dubrovský ◽  
...  

This present study is focused on the modeling of the most important potato pest i.e Colorado potato beetle (Leptinotarsa decemlineata, Say 1824) development in relation to the climate conditions over the area of the Czech Republic. The aim was to develop a model allowing the assessment of the CPB possible spread under the climate change. For the estimation of the CPB occurrence in expected climate conditions we used a dynamic model CLIMEX that enables to determine the suitability of a given location climate for the pests survival and infestation capability based on known pests requirements to the climate conditions. Following the validation and calibration of the model outputs, the meteorological data were altered according to three Global Circulation Models (ECHAM4, HadCM3, NCARPCM) that were driven by two SRES emission scenarios (A2, B1) with two assumed levels of climate system sensitivity for period 2025 and 2050. Model output, for current and expected climate conditions, were visualized by GIS using a digital landscape model. Under all climate change scenarios we noted a widening of CPB distribution area and change in the infestation pressure of the pest.


1994 ◽  
Vol 72 (2) ◽  
pp. 312-318 ◽  
Author(s):  
G. Boiteau ◽  
G. C. C. Tai ◽  
M. E. Drew

A beige elytral mutant of the Colorado potato beetle, Leptinotarsa decemlineata (Say), has been isolated for the first time. The inheritance of the beige mutation is controlled by two dominant genes, both of which are required for the expression of the color. The mutation could be maintained at a low rate in the wild population by the presence of one of the two genes. The lower biological fitness of the beige mutant, characterized by a longer mean total development time and lower fertility, is demonstrated. The data suggest that the melanization of markings on different areas of the body of the Colorado potato beetle are under the control of different genes. This study suggests that the previous presumption that other elytral anomalies were nongenetic in origin may be in question.


Genetics ◽  
2001 ◽  
Vol 158 (2) ◽  
pp. 695-700 ◽  
Author(s):  
David J Hawthorne

Abstract A genetic linkage map was constructed from an intraspecific cross of the Colorado potato beetle, Leptinotarsa decemlineata. This is an initial step toward mapping the loci that underlie important phenotypes associated with insect adaptation to an agroecosystem. The map was made with 172 AFLP and 10 anonymous codominant markers segregating among 74 backcross (BC1) individuals. Markers were mapped to 18 linkage groups and a subset of the markers with a mean intermarker distance of 11.1 cM is presented. A pyrethroid-resistance candidate gene, LdVssc1, was placed onto the map as well. The sex chromosome was identified by exploiting the XO nature of sex determination in this species using patterns of variation at LdVssc1 and the codominant markers.


2018 ◽  
Vol 106 ◽  
pp. 125-133 ◽  
Author(s):  
Asieh Rasoolizadeh ◽  
Marie-Claire Goulet ◽  
Jean-Frédéric Guay ◽  
Conrad Cloutier ◽  
Dominique Michaud

2005 ◽  
Vol 83 (2) ◽  
pp. 89-98 ◽  
Author(s):  
C. Noronha ◽  
G.M. Duke ◽  
M.S. Goettel

The phenology and damage potential of the Colorado potato beetle (Leptinotarsa decemlineata) were studied in the potato producing area in southern Alberta. Experimental plots were established at Lethbridge in 1998, 1999 and 2000, and at Vauxhall in 1998 and 1999. At each site, one plot was protected against the beetle by application of insecticides while the other was "unprotected." Natural potato beetle populations quickly colonized unprotected plots each year. Overwintered adults appeared in plots by mid June with mean densities reaching between 0.3 and 0.6 per plant. Eggs were laid on young plants with mean densities reaching two egg masses per plant by late June. Maximum larval densities reached 9.5 per plant for each of 1st, 2nd and 3rd instars and 14 per plant for 4th instars. Maximum density for newly emerged adults was 57 per plant in mid-July at the 2000 Lethbridge unprotected plot. Defoliation was very low at the beginning of the season but increased sharply when 3rd and 4th instar populations peaked and continued to rise as new adults emerged. Maximum defoliation occurred at the Lethbridge plot in 2000 with 100% defoliation by 10 August. Total yields in all unprotected plots ranged from 10 to 40% lower than in the protected plots. Mean density of overwintering adults within potato plots was 76 beetles m-2 with a maximum of 232 m-2. Mean overwintering mortality was 22% and mean depth of overwintering adults was 12 cm, with 63% of the beetles collected at depths ≤ 10 cm. Our results indicate that the phenology of the beetle is similar to that reported in areas where population buildups were rapid and devastating soon after insecticide resistant populations appeared. Consequently the beetle must be considered as a serious threat to potato production in southern Alberta.


2003 ◽  
Vol 135 (1) ◽  
pp. 1-22 ◽  
Author(s):  
G. Boiteau ◽  
A. Alyokhin ◽  
D.N. Ferro

AbstractThe recent introduction of the concept of refuge areas for the management of the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera : Chrysomelidae), on resistant potato highlighted the existence of important gaps in our knowledge and understanding of this pest's movement within and between habitats. The objective of this review is to synthesize the information available for the benefit of crop managers and to identify subject areas in need of additional research. A traditional, somewhat encyclopedic, review of the old and recent literature on research methods, basics of flight and walking, as well as abiotic and biotic conditions for dispersal, revealed a considerable volume of information accumulated since the early 1900s. There is a consensus on the role of abiotic factors on flight and walking, but a better understanding of the biotic factors will be required before the variability of the dispersal response can be fully explained or predicted. Cybernetic models of orientation proposed in the literature were pulled together into a schematic representation of the orientation process in walking L. decemlineata. The model begins the integration of the different conditions and underlying suggested mechanisms responsible for the orientation of the walking beetle. There is remarkably little information on the orientation of potato beetles during flight. Finally, the seasonality of walking and flight dispersal is reviewed in relation to the host habitat and overwintering sites.


Sign in / Sign up

Export Citation Format

Share Document