scholarly journals Role of Jasmonic Acid Pathway in Tomato Plant-Pseudomonas syringae Interaction

Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 136 ◽  
Author(s):  
Loredana Scalschi ◽  
Eugenio Llorens ◽  
Pilar García-Agustín ◽  
Begonya Vicedo

The jasmonic acid pathway has been considered as the backbone of the response against necrotrophic pathogens. However, a hemi-biotrophic pathogen, such as Pseudomonas syringae, has taken advantage of the crosstalk between the different plant hormones in order to manipulate the responses for its own interest. Despite that, the way in which Pseudomonas syringae releases coronatine to activate jasmonic acid-derived responses and block the activation of salicylic acid-mediated responses is widely known. However, the implication of the jasmonic intermediates in the plant-Pseudomonas interaction is not studied yet. In this work, we analyzed the response of both, plant and bacteria using SiOPR3 tomato plants. Interestingly, SiOPR3 plants are more resistant to infection with Pseudomonas. The gene expression of bacteria showed that, in SiOPR3 plants, the activation of pathogenicity is repressed in comparison to wild type plants, suggesting that the jasmonic acid pathway might play a role in the pathogenicity of the bacteria. Moreover, treatments with JA restore the susceptibility as well as activate the expression of bacterial pathogenicity genes. The observed results suggest that a complete jasmonic acid pathway is necessary for the susceptibility of tomato plants to Pseudomonas syringae.

Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 624 ◽  
Author(s):  
Vicente Montejano-Ramírez ◽  
Ernesto García-Pineda ◽  
Eduardo Valencia-Cantero

Plants face a variety of biotic and abiotic stresses including attack by microbial phytopathogens and nutrient deficiencies. Some bacterial volatile organic compounds (VOCs) activate defense and iron-deficiency responses in plants. To establish a relationship between defense and iron deficiency through VOCs, we identified key genes in the defense and iron-deprivation responses of the legume model Medicago truncatula and evaluated the effect of the rhizobacterial VOC N,N-dimethylhexadecylamine (DMHDA) on the gene expression in these pathways by RT-qPCR. DMHDA increased M. truncatula growth 1.5-fold under both iron-sufficient and iron-deficient conditions compared with untreated plants, whereas salicylic acid and jasmonic acid decreased growth. Iron-deficiency induced iron uptake and defense gene expression. Moreover, the effect was greater in combination with DMHDA. Salicylic acid, Pseudomonas syringae, jasmonic acid, and Botrytis cinerea had inhibitory effects on growth and iron response gene expression but activated defense genes. Taken together, our results showed that the VOC DMHDA activates defense and iron-deprivation pathways while inducing a growth promoting effect unlike conventional phytohormones, highlighting that DMHDA does not mimic jasmonic acid but induces an alternative pathway. This is a novel aspect in the complex interactions between biotic and abiotic stresses.


2000 ◽  
Vol 13 (5) ◽  
pp. 503-511 ◽  
Author(s):  
Vaijayanti Gupta ◽  
Michael G. Willits ◽  
Jane Glazebrook

The Arabidopsis enhanced disease susceptibility 4 (eds4) mutation causes enhanced susceptibility to infection by the bacterial pathogen Pseudomonas syringae pv. Maculicola ES4326 (Psm ES4326). Gene-for-gene resistance to bacteria carrying the avirulence gene avrRpt2 is not significantly affected by eds4. Plants homozygous for eds4 exhibit reduced expression of the pathogenesis-related gene PR-1 after infection by Psm ES4326, weakened responses to treatment with the signal molecule salicylic acid (SA), impairment of the systemic acquired resistance response, and reduced accumulation of SA after infection with Psm ES4326. These phenotypes indicate that EDS4 plays a role in SA-dependent signaling. SA has been shown to have a negative effect on activation of gene expression by the signal molecule jasmonic acid (JA). Two mutations that cause reduced SA levels, eds4 and pad4, cause heightened responses to inducers of JA-dependent gene expression, providing genetic evidence to support the idea that SA interferes with JA-dependent signaling. Two possible working models of the role of EDS4 in governing activation of defense responses are presented.


2019 ◽  
Vol 116 (15) ◽  
pp. 7387-7396 ◽  
Author(s):  
Peng-Jun Zhang ◽  
Jia-Ning Wei ◽  
Chan Zhao ◽  
Ya-Fen Zhang ◽  
Chuan-You Li ◽  
...  

The whitefly Bemisia tabaci is one of the world’s most important invasive crop pests, possibly because it manipulates plant defense signaling. Upon infestation by whiteflies, plants mobilize salicylic acid (SA)-dependent defenses, which mainly target pathogens. In contrast, jasmonic acid (JA)-dependent defenses are gradually suppressed in whitefly-infested plants. The down-regulation of JA defenses make plants more susceptible to insects, including whiteflies. Here, we report that this host–plant manipulation extends to neighboring plants via airborne signals. Plants respond to insect attack with the release of a blend of inducible volatiles. Perception of these volatiles by neighboring plants usually primes them to prepare for an imminent attack. Here, however, we show that whitefly-induced tomato plant volatiles prime SA-dependent defenses and suppress JA-dependent defenses, thus rendering neighboring tomato plants more susceptible to whiteflies. Experiments with volatiles from caterpillar-damaged and pathogen-infected plants, as well as with synthetic volatiles, confirm that whiteflies modify the quality of neighboring plants for their offspring via whitefly-inducible plant volatiles.


2019 ◽  
Author(s):  
Kena Casarrubias-Castillo ◽  
Josaphat M Montero-Vargas ◽  
Nicole Dabdoub-González ◽  
Robert Winkler ◽  
Norma A Martinez-Gallardo ◽  
...  

A previous study with spr2 mutant tomato plants which are negatively affected in the synthesis of jasmonic acid (JA), suggested that JA regulates the arbuscular mycorrhizal fungi (AMF) colonization via the control of carbon (C) partitioning. Although this and other studies have suggested the important positive role played by JA in the regulation of AMF root colonization in tomato plants, it is currently unclear how different host plant genetic backgrounds affect gene expression and secondary metabolites variation during JA-dependent mycorrhization. In this study, wild type and spr2 mutant tomato plants having “low”, “medium” and “high” mycorrhizal colonization with Rhizophagus irregularis, were analyzed independently using transcriptomic and untargeted metabolomic approaches. The results obtained revealed that the degree of mycorrhizal colonization efficiency could be associated with contrasting expression levels of certain key genes controlling gibberellin signaling, ethylene biosynthesis and signaling, and synthesis of apocarotenoids, phenylpropanoids and tomatine, in roots. Only a few wound responsive genes, including JA signaling and biosynthesis genes, such as Prosystemin and JAZ2 were found to influence AMF colonization. Conversely, a systemic and JA-dependent induction/ repression of genes different from those altered in roots was detected in leaves of mycorrhizal plants. The most significant changes in metabolite abundance were detected in roots with reduced AMF colonization. Included among the latter were metabolites known to be associated with important aspects of AMF symbiosis, such as signaling, nutrient exchange and modulation of pathogen defense response. Αlpha-tomatine levels appeared to be an important factor, whose abundance negatively correlated wit h AMF colonization levels in tomato, suggesting a regulatory role for JA in the synthesis of this metabolite during the AMF symbiosis.


2019 ◽  
Author(s):  
Richard Hickman ◽  
Marciel Pereira Mendes ◽  
Marcel C. Van Verk ◽  
Anja J.H. Van Dijken ◽  
Jacopo Di Sora ◽  
...  

AbstractThe phytohormone salicylic acid (SA) is a central regulator of plant immunity. Antagonistic and synergistic actions between SA and other defense-associated hormones like jasmonic acid (JA) play key roles in determining the outcome of the plant immune response. To obtain a deeper understanding of SA-mediated transcriptional reprogramming and SA/JA crosstalk, we generated a high-resolution time series of gene expression from Arabidopsis leaves treated with SA alone and a combination of SA and methyl JA (MeJA), sampled at 14 time points over a 16-h period. We found that approximately one-third of the Arabidopsis genome was differentially expressed in response to SA, and temporal changes in gene expression could be partitioned into 45 distinct clusters of process-specific coregulated genes, linked to specific cis-regulatory elements and binding of transcription factors (TFs). Integration of our expression data with information on TF-DNA binding allowed us to generate a dynamic gene regulatory network model of the SA response, recovering known regulators and identifying novel ones. We found that 12% of SA-responsive genes and 69% of the MeJA-responsive genes exhibited antagonistic or synergistic expression levels in the combination treatment. Multi-condition co-clustering of the single- and combined-hormone expression profiles predicted underlying regulatory mechanisms in signal integration. Finally, we identified the TFs ANAC061 and ANAC090 as negative regulators of SA pathway genes and defense against biotrophic pathogens. Collectively, our data provide an unprecedented level of detail about transcriptional changes during the SA response and SA/JA crosstalk, serving as a valuable resource for systems-level network studies and functional plant defense studies.


2019 ◽  
Vol 125 (5) ◽  
pp. 775-784 ◽  
Author(s):  
Tetiana Kalachova ◽  
Martin Janda ◽  
Vladimír Šašek ◽  
Jitka Ortmannová ◽  
Pavla Nováková ◽  
...  

Abstract Background and Aims We have recently shown that an Arabidopsis thaliana double mutant of type III phosphatidylinositol-4-kinases (PI4Ks), pi4kβ1β2, constitutively accumulated a high level of salicylic acid (SA). By crossing this pi4kβ1β2 double mutant with mutants impaired in SA synthesis (such as sid2 impaired in isochorismate synthase) or transduction, we demonstrated that the high SA level was responsible for the dwarfism phenotype of the double mutant. Here we aimed to distinguish between the SA-dependent and SA-independent effects triggered by the deficiency in PI4Kβ1 and PI4Kβ2. Methods To achieve this we used the sid2pi4kβ1β2 triple mutant. High-throughput analyses of phytohormones were performed on this mutant together with pi4kβ1β2 and sid2 mutants and wild-type plants. Responses to pathogens, namely Hyaloperonospora arabidopsidis, Pseudomonas syringae and Botrytis cinerea, and also to the non-host fungus Blumeria graminis, were also determined. Callose accumulation was monitored in response to flagellin. Key Results We show here the prominent role of high SA levels in influencing the concentration of many other tested phytohormones, including abscisic acid and its derivatives, the aspartate-conjugated form of indole-3-acetic acid and some cytokinins such as cis-zeatin. We show that the increased resistance of pi4kβ1β2 plants to the host pathogens H. arabidopsidis, P. syringae pv. tomato DC3000 and Bothrytis cinerea is dependent on accumulation of high SA levels. In contrast, accumulation of callose in pi4kβ1β2 after flagellin treatment was independent of SA. Concerning the response to Blumeria graminis, both callose accumulation and fungal penetration were enhanced in the pi4kβ1β2 double mutant compared to wild-type plants. Both of these processes occurred in an SA-independent manner. Conclusions Our data extensively illustrate the influence of SA on other phytohormone levels. The sid2pi4kβ1β2 triple mutant revealed the role of PI4Kβ1/β2 per se, thus showing the importance of these enzymes in plant defence responses.


2019 ◽  
Author(s):  
Kena Casarrubias-Castillo ◽  
Josaphat M Montero-Vargas ◽  
Nicole Dabdoub-González ◽  
Robert Winkler ◽  
Norma A Martinez-Gallardo ◽  
...  

A previous study with spr2 mutant tomato plants which are negatively affected in the synthesis of jasmonic acid (JA), suggested that JA regulates the arbuscular mycorrhizal fungi (AMF) colonization via the control of carbon (C) partitioning. Although this and other studies have suggested the important positive role played by JA in the regulation of AMF root colonization in tomato plants, it is currently unclear how different host plant genetic backgrounds affect gene expression and secondary metabolites variation during JA-dependent mycorrhization. In this study, wild type and spr2 mutant tomato plants having “low”, “medium” and “high” mycorrhizal colonization with Rhizophagus irregularis, were analyzed independently using transcriptomic and untargeted metabolomic approaches. The results obtained revealed that the degree of mycorrhizal colonization efficiency could be associated with contrasting expression levels of certain key genes controlling gibberellin signaling, ethylene biosynthesis and signaling, and synthesis of apocarotenoids, phenylpropanoids and tomatine, in roots. Only a few wound responsive genes, including JA signaling and biosynthesis genes, such as Prosystemin and JAZ2 were found to influence AMF colonization. Conversely, a systemic and JA-dependent induction/ repression of genes different from those altered in roots was detected in leaves of mycorrhizal plants. The most significant changes in metabolite abundance were detected in roots with reduced AMF colonization. Included among the latter were metabolites known to be associated with important aspects of AMF symbiosis, such as signaling, nutrient exchange and modulation of pathogen defense response. Αlpha-tomatine levels appeared to be an important factor, whose abundance negatively correlated wit h AMF colonization levels in tomato, suggesting a regulatory role for JA in the synthesis of this metabolite during the AMF symbiosis.


2008 ◽  
Vol 21 (11) ◽  
pp. 1408-1420 ◽  
Author(s):  
Lin Wang ◽  
Raka M. Mitra ◽  
Keegan D. Hasselmann ◽  
Masanao Sato ◽  
Lisa Lenarz-Wyatt ◽  
...  

Expression profiling of wild-type plants and mutants with defects in key components of the defense signaling network was used to model the Arabidopsis network 24 h after infection by Pseudomonas syringae pv. maculicola ES4326. Results using the Affymetrix ATH1 array revealed that expression levels of most pathogen-responsive genes were affected by mutations in coi1, ein2, npr1, pad4, or sid2. These five mutations defined a small number of different expression patterns displayed by the majority of pathogen-responsive genes. P. syringae pv. tomato strain DC3000 elicited a much weaker salicylic acid (SA) response than ES4326. Additional mutants were profiled using a custom array. Profiles of pbs3 and ndr1 revealed major effects of these mutations and allowed PBS3 and NDR1 to be placed between the EDS1/PAD4 node and the SA synthesis node in the defense network. Comparison of coi1, dde2, and jar1 profiles showed that many genes were affected by coi1 but very few were affected by dde2 or jar1. Profiles of coi1 plants infected with ES4326 were very similar to those of wild-type plants infected with bacteria unable to produce the phytotoxin coronatine, indicating that, essentially, all COI1-dependent gene expression changes in this system are caused by coronatine.


2007 ◽  
Vol 189 (19) ◽  
pp. 6773-6786 ◽  
Author(s):  
Alexander M. Jones ◽  
Steven E. Lindow ◽  
Mary C. Wildermuth

ABSTRACT A genetically tractable model plant pathosystem, Pseudomonas syringae pv. tomato DC3000 on tomato and Arabidopsis thaliana hosts, was used to investigate the role of salicylic acid (SA) and iron acquisition via siderophores in bacterial virulence. Pathogen-induced SA accumulation mediates defense in these plants, and DC3000 contains the genes required for the synthesis of SA, the SA-incorporated siderophore yersiniabactin (Ybt), and the fluorescent siderophore pyoverdin (Pvd). We found that DC3000 synthesizes SA, Ybt, and Pvd under iron-limiting conditions in culture. Synthesis of SA and Ybt by DC3000 requires pchA, an isochorismate synthase gene in the Ybt genomic cluster, and exogenous SA can restore Ybt production by the pchA mutant. Ybt was also produced by DC3000 in planta, suggesting that Ybt plays a role in DC3000 pathogenesis. However, the pchA mutant did not exhibit any growth defect or altered virulence in plants. This lack of phenotype was not attributable to plant-produced SA restoring Ybt production, as the pchA mutant grew similarly to DC3000 in an Arabidopsis SA biosynthetic mutant, and in planta Ybt was not detected in pchA-infected wild-type plants. In culture, no growth defect was observed for the pchA mutant versus DC3000 for any condition tested. Instead, enhanced growth of the pchA mutant was observed under stringent iron limitation and additional stresses. This suggests that SA and Ybt production by DC3000 is costly and that Pvd is sufficient for iron acquisition. Further exploration of the comparative synthesis and utility of Ybt versus Pvd production by DC3000 found siderophore-dependent amplification of ybt gene expression to be absent, suggesting that Ybt may play a yet unknown role in DC3000 pathogenesis.


2020 ◽  
Author(s):  
Ning Zhang ◽  
Marina A Pombo ◽  
Hernan G Rosli ◽  
Gregory B Martin

Wall-associated kinases (Waks) are known to be important components of plant immunity against various pathogens including Pseudomonas syringae pv. tomato (Pst) although their molecular mechanisms are largely unknown. In tomato, SlWak1 has been implicated in immunity because its transcript abundance increases significantly in leaves after treatment with the flagellin-derived peptides flg22 and flgII-28, which activate the receptors Fls2 and Fls3, respectively. We generated two SlWak1 tomato mutants (Δwak1) using CRISPR/Cas9 and investigated the role of SlWak1 in tomato-Pst interactions. PTI activated in the apoplast by flg22 or flgII-28 was compromised in Δwak1 plants but PTI at the leaf surface was unaffected. The Δwak1 plants developed fewer callose deposits than wild-type plants but retained the ability to generate reactive oxygen species and activate MAPKs in response to flg22 and flgII-28. The induction of Wak1 gene expression by flg22 and flgII-28 was greatly reduced in a tomato mutant lacking Fls2 and Fls3 but induction of Fls3 gene expression by flgII-28 was unaffected in Δwak1 plants. After Pst inoculation, Δwak1 plants developed disease symptoms more slowly than Δfls2.1/fls2.2/fls3 mutant plants, although both plants ultimately were similarly susceptible. SlWak1 co-immunoprecipitated with both Fls2 and Fls3 independently of flg22/flgII-28 or Bak1. These observations suggest that SlWak1 acts in a complex with Fls2/Fls3 and plays an important role at later stages of the PTI in the apoplast.


Sign in / Sign up

Export Citation Format

Share Document