scholarly journals Complete Chloroplast Genomes of Three Medicinal Alpinia Species: Genome Organization, Comparative Analyses and Phylogenetic Relationships in Family Zingiberaceae

Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 286 ◽  
Author(s):  
Dong-Mei Li ◽  
Gen-Fa Zhu ◽  
Ye-Chun Xu ◽  
Yuan-Jun Ye ◽  
Jin-Mei Liu

Alpinia katsumadai (A. katsumadai), Alpinia oxyphylla (A. oxyphylla) and Alpinia pumila (A. pumila), which belong to the family Zingiberaceae, exhibit multiple medicinal properties. The chloroplast genome of a non-model plant provides valuable information for species identification and phylogenetic analysis. Here, we sequenced three complete chloroplast genomes of A. katsumadai, A. oxyphylla sampled from Guangdong and A. pumila, and analyzed the published chloroplast genomes of Alpinia zerumbet (A. zerumbet) and A. oxyphylla sampled from Hainan to retrieve useful chloroplast molecular resources for Alpinia. The five Alpinia chloroplast genomes possessed typical quadripartite structures comprising of a large single copy (LSC, 87,248–87,667 bp), a small single copy (SSC, 15,306–18,295 bp) and a pair of inverted repeats (IR, 26,917–29,707 bp). They had similar gene contents, gene orders and GC contents, but were slightly different in the numbers of small sequence repeats (SSRs) and long repeats. Interestingly, fifteen highly divergent regions (rpl36, ycf1, rps15, rpl22, infA, psbT-psbN, accD-psaI, petD-rpoA, psaC-ndhE, ccsA-ndhD, ndhF-rpl32, rps11-rpl36, infA-rps8, psbC-psbZ, and rpl32-ccsA), which could be suitable for species identification and phylogenetic studies, were detected in the Alpinia chloroplast genomes. Comparative analyses among the five chloroplast genomes indicated that 1891 mutational events, including 304 single nucleotide polymorphisms (SNPs) and 118 insertion/deletions (indels) between A. pumila and A. katsumadai, 367 SNPs and 122 indels between A. pumila and A. oxyphylla sampled from Guangdong, 331 SNPs and 115 indels between A. pumila and A. zerumbet, 371 SNPs and 120 indels between A. pumila and A. oxyphylla sampled from Hainan, and 20 SNPs and 23 indels between the two accessions of A. oxyphylla, were accurately located. Additionally, phylogenetic relationships based on SNP matrix among 28 whole chloroplast genomes showed that Alpinia was a sister branch to Amomum in the family Zingiberaceae, and that the five Alpinia accessions were divided into three groups, one including A. pumila, another including A. zerumbet and A. katsumadai, and the other including two accessions of A. oxyphylla. In conclusion, the complete chloroplast genomes of the three medicinal Alpinia species in this study provided valuable genomic resources for further phylogeny and species identification in the family Zingiberaceae.

2021 ◽  
Author(s):  
JiaoYi Pan ◽  
Sun Shiyun ◽  
Xia Qiong ◽  
Lv Xvhan ◽  
Yang Xinxian ◽  
...  

Abstract Background: Yizhiren is the fruit of Alpinia oxyphylla(Zingiberaceae) ,a well-known Chinese herbal medicine from China. The complete chloroplast genome of Alpinia oxyphylla was studied in this paper, which laid the foundation of the further study of genetic information and data of Alpinia oxyphylla.Methods: The complete chloroplast sequences of 19 the family Zingiberaceae species were aligned using MEGAX software.The phylogenetic tree was constructed by the Maximum-Likelihood method and edited by the Evolview online.Results: The chloroplast gene group is a typical tetragonal structure, which is formed by 161,351 base pairs. Each genome has a large single-copy region (LSC) of 87,248 bp, a small single-copy region (SSC) of 16,175 bp and a pair of inverted-repeat regions (IRs) of 28,964 bp in each. The complete nucleotide composition of chloroplast genome is: 31.5% A, 32.4% T, 18.2% C, 17.9% G, and the total GC content is 36.2%. Among them 28 exons and 15 introns. A total of 137 genes were annotated, which included 92 protein coding genes (PCGs), 37 metastatic RNA (tRNAs) and 8 ribosomal RNA (rRNAs).Conclusions: The phylogenetic ML tree shown the conclusion that Alpinia oxyphylla is closely related to Alpinia chinensis on genetic position relationship. This result is of great value to the study of biological inheritance, species identification and medicinal value. Meanwhile, it provides references for the study of biological inheritance, species identification and medicinal value.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8450 ◽  
Author(s):  
Sunan Huang ◽  
Xuejun Ge ◽  
Asunción Cano ◽  
Betty Gaby Millán Salazar ◽  
Yunfei Deng

The genus Dicliptera (Justicieae, Acanthaceae) consists of approximately 150 species distributed throughout the tropical and subtropical regions of the world. Newly obtained chloroplast genomes (cp genomes) are reported for five species of Dilciptera (D. acuminata, D. peruviana, D. montana, D. ruiziana and D. mucronata) in this study. These cp genomes have circular structures of 150,689–150,811 bp and exhibit quadripartite organizations made up of a large single copy region (LSC, 82,796–82,919 bp), a small single copy region (SSC, 17,084–17,092 bp), and a pair of inverted repeat regions (IRs, 25,401–25,408 bp). Guanine-Cytosine (GC) content makes up 37.9%–38.0% of the total content. The complete cp genomes contain 114 unique genes, including 80 protein-coding genes, 30 transfer RNA (tRNA) genes, and four ribosomal RNA (rRNA) genes. Comparative analyses of nucleotide variability (Pi) reveal the five most variable regions (trnY-GUA-trnE-UUC, trnG-GCC, psbZ-trnG-GCC, petN-psbM, and rps4-trnL-UUA), which may be used as molecular markers in future taxonomic identification and phylogenetic analyses of Dicliptera. A total of 55-58 simple sequence repeats (SSRs) and 229 long repeats were identified in the cp genomes of the five Dicliptera species. Phylogenetic analysis identified a close relationship between D. ruiziana and D. montana, followed by D. acuminata, D. peruviana, and D. mucronata. Evolutionary analysis of orthologous protein-coding genes within the family Acanthaceae revealed only one gene, ycf15, to be under positive selection, which may contribute to future studies of its adaptive evolution. The completed genomes are useful for future research on species identification, phylogenetic relationships, and the adaptive evolution of the Dicliptera species.


2021 ◽  
Vol 46 (1) ◽  
pp. 162-174
Author(s):  
Ming-Hui Yan ◽  
Chun-Yang Li ◽  
Peter W. Fritsch ◽  
Jie Cai ◽  
Heng-Chang Wang

Abstract—The phylogenetic relationships among 11 out of the 12 genera of the angiosperm family Styracaceae have been largely resolved with DNA sequence data based on all protein-coding genes of the plastome. The only genus that has not been phylogenomically investigated in the family with molecular data is the monotypic genus Parastyrax, which is extremely rare in the wild and difficult to collect. To complete the sampling of the genera comprising the Styracaceae, examine the plastome composition of Parastyrax, and further explore the phylogenetic relationships of the entire family, we sequenced the whole plastome of P. lacei and incorporated it into the Styracaceae dataset for phylogenetic analysis. Similar to most others in the family, the plastome is 158189 bp in length and contains a large single-copy region of 88085 bp and a small single-copy region of 18540 bp separated by two inverted-repeat regions of 25781 bp each. A total of 113 genes was predicted, including 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. Phylogenetic relationships among all 12 genera of the family were constructed with 79 protein-coding genes. Consistent with a previous study, Styrax, Huodendron, and a clade of Alniphyllum + Bruinsmia were successively sister to the remainder of the family. Parastyrax was strongly supported as sister to an internal clade comprising seven other genera of the family, whereas Halesia and Pterostyrax were both recovered as polyphyletic, as in prior studies. However, when we employed either the whole plastome or the large- or small-single copy regions as datasets, Pterostyrax was resolved as monophyletic with 100% support, consistent with expectations based on morphology and indicating that non-coding regions of the Styracaceae plastome contain informative phylogenetic signal. Conversely Halesia was still resolved as polyphyletic but with novel strong support.


2019 ◽  
Vol 42 (4) ◽  
pp. 601-611 ◽  
Author(s):  
Yan Li ◽  
Liukun Jia ◽  
Zhihua Wang ◽  
Rui Xing ◽  
Xiaofeng Chi ◽  
...  

Abstract Saxifraga sinomontana J.-T. Pan & Gornall belongs to Saxifraga sect. Ciliatae subsect. Hirculoideae, a lineage containing ca. 110 species whose phylogenetic relationships are largely unresolved due to recent rapid radiations. Analyses of complete chloroplast genomes have the potential to significantly improve the resolution of phylogenetic relationships in this young plant lineage. The complete chloroplast genome of S. sinomontana was de novo sequenced, assembled and then compared with that of other six Saxifragaceae species. The S. sinomontana chloroplast genome is 147,240 bp in length with a typical quadripartite structure, including a large single-copy region of 79,310 bp and a small single-copy region of 16,874 bp separated by a pair of inverted repeats (IRs) of 25,528 bp each. The chloroplast genome contains 113 unique genes, including 79 protein-coding genes, four rRNAs and 30 tRNAs, with 18 duplicates in the IRs. The gene content and organization are similar to other Saxifragaceae chloroplast genomes. Sixty-one simple sequence repeats were identified in the S. sinomontana chloroplast genome, mostly represented by mononucleotide repeats of polyadenine or polythymine. Comparative analysis revealed 12 highly divergent regions in the intergenic spacers, as well as coding genes of matK, ndhK, accD, cemA, rpoA, rps19, ndhF, ccsA, ndhD and ycf1. Phylogenetic reconstruction of seven Saxifragaceae species based on 66 protein-coding genes received high bootstrap support values for nearly all identified nodes, suggesting a promising opportunity to resolve infrasectional relationships of the most species-rich section Ciliatae of Saxifraga.


Genome ◽  
2020 ◽  
Vol 63 (7) ◽  
pp. 337-348
Author(s):  
Guanglong Hu ◽  
Lili Cheng ◽  
Wugang Huang ◽  
Qingchang Cao ◽  
Lei Zhou ◽  
...  

Coryloideae is a subfamily in the family Betulaceae consisting of four extant genera: Carpinus, Corylus, Ostrya, and Ostryopsis. We sequenced the plastomes of six species of Corylus and one species of Ostryopsis for comparative and phylogenetic analyses. The plastomes are 159–160 kb long and possess typical quadripartite cp architecture. The plastomes show moderate divergence and conserved arrangement. Five mutational hotspots were identified by comparing the plastomes of seven species of Coryloideae: trnG-atpA, trnF-ndhJ, accD-psaI, ndhF-ccsA, and ycf1. We assembled the most complete phylogenomic tree for the family Betulaceae using 68 plastomes. Our cp genomic sequence phylogenetic analyses placed Carpinus, Ostrya, and Ostryopsis in a clade together and left Corylus in a separate clade. Within the genus Corylus, these analyses indicate the existence of five subclades reflecting the phylogeographical relationships among the species. The data offer significant genetic information for the identification of species of the Coryloideae, taxonomic and phylogenetic studies, and molecular breeding.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e6032 ◽  
Author(s):  
Zhenyu Zhao ◽  
Xin Wang ◽  
Yi Yu ◽  
Subo Yuan ◽  
Dan Jiang ◽  
...  

Dioscorea L., the largest genus of the family Dioscoreaceae with over 600 species, is not only an important food but also a medicinal plant. The identification and classification of Dioscorea L. is a rather difficult task. In this study, we sequenced five Dioscorea chloroplast genomes, and analyzed with four other chloroplast genomes of Dioscorea species from GenBank. The Dioscorea chloroplast genomes displayed the typical quadripartite structure of angiosperms, which consisted of a pair of inverted repeats separated by a large single-copy region, and a small single-copy region. The location and distribution of repeat sequences and microsatellites were determined, and the rapidly evolving chloroplast genome regions (trnK-trnQ, trnS-trnG, trnC-petN, trnE-trnT, petG-trnW-trnP, ndhF, trnL-rpl32, and ycf1) were detected. Phylogenetic relationships of Dioscorea inferred from chloroplast genomes obtained high support even in shortest internodes. Thus, chloroplast genome sequences provide potential molecular markers and genomic resources for phylogeny and species identification.


2021 ◽  
Author(s):  
Zhou Hong ◽  
Dan Peng ◽  
Wenchuang He ◽  
Ningnan Zhang ◽  
Zengjiang Yang ◽  
...  

Abstract The genus Dalbergia contains more than 120 species several of which are trees that produce traditional medicines and extremely high value timber commonly referred to as rosewood. Due to the rarity of these species in the wild, the high value of the timber, and a growing international illicit trade CITES has listed the entire genus in appendix II and the species D. nigra in appendix I because it is considered threatened with extinction. Given this and the fact that species or even genus level determination is nearly impossible from cut timber alternative molecular methods are needed to identify and track intercepted rosewood. In order to improve molecular identification of rosewood, we sequenced and assembled eight chloroplast genomes including D. nigra as well as conducted comparative analyses with all other available chloroplast genomes in Dalbergia and closely related lineages. From these analyses numerous repeats including simple sequence repeats (SSR) and conserved nucleotide polymorphisms unique to subclades within the genus were detected. From phylogenetic analysis using the CDS of 77 coding genes the groups Siam rosewood and scented rosewood based mainly on wood characteristics were supported as monophyletic. In addition, several instances of paraphyly and polyphyly resulting from mismatch between taxonomic determinations and phylogenetic tree topology were identified. Ultimately, the highly variable regions in the chloroplast genomes will provide useful plastid markers for further studies regarding the identification, phylogeny, and population genetics of Dalbergia species including those frequently intercepted in illegal trade.


Plants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 296 ◽  
Author(s):  
Jacinta N. Munyao ◽  
Xiang Dong ◽  
Jia-Xin Yang ◽  
Elijah M. Mbandi ◽  
Vincent O. Wanga ◽  
...  

The genus Chlorophytum includes many economically important species well-known for medicinal, ornamental, and horticultural values. However, to date, few molecular genomic resources have been reported for this genus. Therefore, there is limited knowledge of phylogenetic studies, and the available chloroplast (cp) genome of Chlorophytum (C. rhizopendulum) does not provide enough information on this genus. In this study, we present genomic resources for C. comosum and C. gallabatense, which had lengths of 154,248 and 154,154 base pairs (bp), respectively. They had a pair of inverted repeats (IRa and IRb) of 26,114 and 26,254 bp each in size, separating the large single-copy (LSC) region of 84,004 and 83,686 bp from the small single-copy (SSC) region of 18,016 and 17,960 bp in C. comosum and C. gallabatense, respectively. There were 112 distinct genes in each cp genome, which were comprised of 78 protein-coding genes, 30 tRNA genes, and four rRNA genes. The comparative analysis with five other selected species displayed a generally high level of sequence resemblance in structural organization, gene content, and arrangement. Additionally, the phylogenetic analysis confirmed the previous phylogeny and produced a phylogenetic tree with similar topology. It showed that the Chlorophytum species (C. comosum, C. gallabatense and C. rhizopendulum) were clustered together in the same clade with a closer relationship than other plants to the Anthericum ramosum. This research, therefore, presents valuable records for further molecular evolutionary and phylogenetic studies which help to fill the gap in genomic resources and resolve the taxonomic complexes of the genus.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 474 ◽  
Author(s):  
Dong-Mei Li ◽  
Chao-Yi Zhao ◽  
Xiao-Fei Liu

Kaempferia galanga and Kaempferia elegans, which belong to the genus Kaempferia family Zingiberaceae, are used as valuable herbal medicine and ornamental plants, respectively. The chloroplast genomes have been used for molecular markers, species identification and phylogenetic studies. In this study, the complete chloroplast genome sequences of K. galanga and K. elegans are reported. Results show that the complete chloroplast genome of K. galanga is 163,811 bp long, having a quadripartite structure with large single copy (LSC) of 88,405 bp and a small single copy (SSC) of 15,812 bp separated by inverted repeats (IRs) of 29,797 bp. Similarly, the complete chloroplast genome of K. elegans is 163,555 bp long, having a quadripartite structure in which IRs of 29,773 bp length separates 88,020 bp of LSC and 15,989 bp of SSC. A total of 111 genes in K. galanga and 113 genes in K. elegans comprised 79 protein-coding genes and 4 ribosomal RNA (rRNA) genes, as well as 28 and 30 transfer RNA (tRNA) genes in K. galanga and K. elegans, respectively. The gene order, GC content and orientation of the two Kaempferia chloroplast genomes exhibited high similarity. The location and distribution of simple sequence repeats (SSRs) and long repeat sequences were determined. Eight highly variable regions between the two Kaempferia species were identified and 643 mutation events, including 536 single-nucleotide polymorphisms (SNPs) and 107 insertion/deletions (indels), were accurately located. Sequence divergences of the whole chloroplast genomes were calculated among related Zingiberaceae species. The phylogenetic analysis based on SNPs among eleven species strongly supported that K. galanga and K. elegans formed a cluster within Zingiberaceae. This study identified the unique characteristics of the entire K. galanga and K. elegans chloroplast genomes that contribute to our understanding of the chloroplast DNA evolution within Zingiberaceae species. It provides valuable information for phylogenetic analysis and species identification within genus Kaempferia.


Sign in / Sign up

Export Citation Format

Share Document