scholarly journals Complete Chloroplast Genome Characterization of Oxalis Corniculata and Its Comparison with Related Species from Family Oxalidaceae

Plants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 928
Author(s):  
Lubna ◽  
Sajjad Asaf ◽  
Rahmatullah Jan ◽  
Abdul Latif Khan ◽  
In-Jung Lee

Oxalis corniculata L. (family Oxalidaceae) is a small creeper wood sorrel plant that grows well in moist climates. Despite being medicinally important, little is known about the genomics of this species. Here, we determined the complete chloroplast genome sequence of O. corniculata for the first time and compared it with other members of family Oxalidaceae. The genome was 152,189 bp in size and comprised of a pair of 25,387 bp inverted repeats (IR) that separated a large 83,427 bp single copy region (LSC) and a small 16,990 bp single copy region (SSC). The chloroplast genome of O. corniculata contains 131 genes with 83 protein coding genes, 40 tRNA genes, and 8 rRNA genes. The analysis revealed 46 microsatellites, of which 6 were present in coding sequences (CDS) regions, 34 in the LSC, 8 in the SSC, and 2 in the single IR region. Twelve palindromic repeats, 30 forward repeats, and 32 tandem repeats were also detected. Chloroplast genome comparisons revealed an overall high degree of sequence similarity between O. corniculata and O. drummondii and some divergence in the intergenic spacers of related species in Oxalidaceae. Furthermore, the seven most divergent genes (ccsA, clpP, rps8, rps15, rpl22, matK, and ycf1) among genomes were observed. Phylogenomic characterization on the basis of 60 shared genes revealed that O. corniculata is closely related to O. drummondii. The complete O. corniculata genome sequenced in the present study is a valuable resource for investigating the population and evolutionary genetics of family Oxalidaceae and can be used to identify related species.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sajjad Asaf ◽  
Abdul Latif Khan ◽  
Muhammad Numan ◽  
Ahmed Al-Harrasi

AbstractAvicennia marina (family Acanthaceae) is a halotolerant woody shrub that grows wildly and cultivated in the coastal regions. Despite its importance, the species suffers from lack of genomic datasets to improve its taxonomy and phylogenetic placement across the related species. Here, we have aimed to sequence the plastid genome of A. marina and its comparison with related species in family Acanthaceae. Detailed next-generation sequencing and analysis showed a complete chloroplast genome of 150,279 bp, comprising 38.6% GC. Genome architecture is quadripartite revealing large single copy (82,522 bp), small single copy (17,523 bp), and pair of inverted repeats (25,117 bp). Furthermore, the genome contains 132 different genes, including 87 protein-coding genes, 8 rRNA, 37 tRNA genes, and 126 simple sequence repeats (122 mononucleotide, 2 dinucleotides, and 2 trinucleotides). Interestingly, about 25 forward, 15 reversed and 14 palindromic repeats were also found in the A. marina. High degree synteny was observed in the pairwise alignment with related genomes. The chloroplast genome comparative assessment showed a high degree of sequence similarity in coding regions and varying divergence in the intergenic spacers among ten Acanthaceae species. The pairwise distance showed that A. marina exhibited the highest divergence (0.084) with Justicia flava and showed lowest divergence with Aphelandra knappiae (0.059). Current genomic datasets are a valuable resource for investigating the population and evolutionary genetics of family Acanthaceae members’ specifically A. marina and related species.


Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1354
Author(s):  
Slimane Khayi ◽  
Fatima Gaboun ◽  
Stacy Pirro ◽  
Tatiana Tatusova ◽  
Abdelhamid El Mousadik ◽  
...  

Argania spinosa (Sapotaceae), an important endemic Moroccan oil tree, is a primary source of argan oil, which has numerous dietary and medicinal proprieties. The plant species occupies the mid-western part of Morocco and provides great environmental and socioeconomic benefits. The complete chloroplast (cp) genome of A. spinosa was sequenced, assembled, and analyzed in comparison with those of two Sapotaceae members. The A. spinosa cp genome is 158,848 bp long, with an average GC content of 36.8%. The cp genome exhibits a typical quadripartite and circular structure consisting of a pair of inverted regions (IR) of 25,945 bp in length separating small single-copy (SSC) and large single-copy (LSC) regions of 18,591 and 88,367 bp, respectively. The annotation of A. spinosa cp genome predicted 130 genes, including 85 protein-coding genes (CDS), 8 ribosomal RNA (rRNA) genes, and 37 transfer RNA (tRNA) genes. A total of 44 long repeats and 88 simple sequence repeats (SSR) divided into mononucleotides (76), dinucleotides (7), trinucleotides (3), tetranucleotides (1), and hexanucleotides (1) were identified in the A. spinosa cp genome. Phylogenetic analyses using the maximum likelihood (ML) method were performed based on 69 protein-coding genes from 11 species of Ericales. The results confirmed the close position of A. spinosa to the Sideroxylon genus, supporting the revisiting of its taxonomic status. The complete chloroplast genome sequence will be valuable for further studies on the conservation and breeding of this medicinally and culinary important species and also contribute to clarifying the phylogenetic position of the species within Sapotaceae.


Plants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 61 ◽  
Author(s):  
Huyen-Trang Vu ◽  
Ngan Tran ◽  
Thanh-Diem Nguyen ◽  
Quoc-Luan Vu ◽  
My-Huyen Bui ◽  
...  

Paphiopedilum delenatii is a native orchid of Vietnam with highly attractive floral traits. Unfortunately, it is now listed as a critically endangered species with a few hundred individuals remaining in nature. In this study, we performed next-generation sequencing of P. delenatii and assembled its complete chloroplast genome. The whole chloroplast genome of P. delenatii was 160,955 bp in size, 35.6% of which was GC content, and exhibited typical quadripartite structure of plastid genomes with four distinct regions, including the large and small single-copy regions and a pair of inverted repeat regions. There were, in total, 130 genes annotated in the genome: 77 coding genes, 39 tRNA genes, 8 rRNA genes, and 6 pseudogenes. The loss of ndh genes and variation in inverted repeat (IR) boundaries as well as data of simple sequence repeats (SSRs) and divergent hotspots provided useful information for identification applications and phylogenetic studies of Paphiopedilum species. Whole chloroplast genomes could be used as an effective super barcode for species identification or for developing other identification markers, which subsequently serves the conservation of Paphiopedilum species.


Author(s):  
Inkyu Park ◽  
Wook-Jin Kim ◽  
Sang-Min Yeo ◽  
Goya Choi ◽  
Young-Min Kang ◽  
...  

The genus Fritillaria belongs to the widely distributed family Liliaceae. The bulbs of Fritillaria ussuriensis and Fritillaria cirrhosa are valuable herbaceous medicinal ingredients. However, they are still used indiscriminately in herbal medicine. Identification and molecular phylogenic analysis of Fritillaria species is therefore required. Here, we report the complete chloroplast (cp) genome sequences of F. ussuriensis and F. cirrhosa. The two Fritillaria cp genomes were 151,524 and 151,083 bp in length, respectively, including a pair of inverted repeat regions (52,678 and 52,156 bp) separated by a large single copy region (81,732 and 81,390 bp) and small single copy region (17,114 and 17,537 bp). A total of 111 genes in F. ussuriensis and 112 in F. cirrhosa comprised 77 protein-coding genes in F. ussuriensis and 78 in F. cirrhosa, 30 tRNA genes, and four rRNA genes. The gene order, content, and orientation of the two Fritillaria cp genomes exhibited the general structure of flowering plants, and were similar to those of other Fritillaria species. Comparison of the six Fritillaria species’ cp genomes indicated seven highly divergent regions in intergenic spacers and in the matK, rpoC1, rpoC2, ycf1, ycf2, ndhD, and ndhF coding regions. We established the position of the six species through phylogenic analysis. The complete chloroplast genome sequences of two Fritillaria species will be useful genomics resources for identification of Fritillaria species and for studying the phylogenetic relationship among Fritillaria species within the Liliaceae family.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yingnan Chen ◽  
Nan Hu ◽  
Huaitong Wu

Salix wilsonii is an important ornamental willow tree widely distributed in China. In this study, an integrated circular chloroplast genome was reconstructed for S. wilsonii based on the chloroplast reads screened from the whole-genome sequencing data generated with the PacBio RSII platform. The obtained pseudomolecule was 155,750 bp long and had a typical quadripartite structure, comprising a large single copy region (LSC, 84,638 bp) and a small single copy region (SSC, 16,282 bp) separated by two inverted repeat regions (IR, 27,415 bp). The S. wilsonii chloroplast genome encoded 115 unique genes, including four rRNA genes, 30 tRNA genes, 78 protein-coding genes, and three pseudogenes. Repetitive sequence analysis identified 32 tandem repeats, 22 forward repeats, two reverse repeats, and five palindromic repeats. Additionally, a total of 118 perfect microsatellites were detected, with mononucleotide repeats being the most common (89.83%). By comparing the S. wilsonii chloroplast genome with those of other rosid plant species, significant contractions or expansions were identified at the IR-LSC/SSC borders. Phylogenetic analysis of 17 willow species confirmed that S. wilsonii was most closely related to S. chaenomeloides and revealed the monophyly of the genus Salix. The complete S. wilsonii chloroplast genome provides an additional sequence-based resource for studying the evolution of organelle genomes in woody plants.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 441
Author(s):  
Shixiong Ding ◽  
Xiang Dong ◽  
Jiaxin Yang ◽  
Chunce Guo ◽  
Binbin Cao ◽  
...  

Clethra fargesii, an essential ecological and endemic woody plant of the genus Clethra in Clethraceae, is widely distributed in Central China. So far, there have been a paucity of studies on its chloroplast genome. In the present study, we sequenced and assembled the complete chloroplast genome of C. fargesii. We also analyzed the chloroplast genome features and compared them to Clethra delavayi and other closely related species in Ericales. The complete chloroplast genome is 157,486 bp in length, including a large single-copy (LSC) region of 87,034 bp and a small single-copy (SSC) region of 18,492 bp, separated by a pair of inverted repeat (IR) regions of 25,980 bp. The GC content of the whole genome is 37.3%, while those in LSC, SSC, and IR regions are 35.4%, 30.7%, and 43.0%, respectively. The chloroplast genome of C. fargesii encodes 132 genes in total, including 87 protein-coding genes (PCGs), 37 tRNA genes, and eight rRNA genes. A total of 26,407 codons and 73 SSRs were identified in C. fargesii chloroplast genome. Additionally, we postulated and demonstrated that the structure of the chloroplast genome in Clethra species may present evolutionary conservation based on the comparative analysis of genome features and genome alignment among eight Ericales species. The low Pi values revealed evolutionary conservation based on the nucleotide diversity analysis of chloroplast genome in two Clethra species. The low selection pressure was shown by a few positively selected genes by adaptive evolution analysis using 80 coding sequences (CDSs) of the chloroplast genomes of two Clethra species. The phylogenetic tree showed that Clethraceae and Ericaceae are sister clades, which reconfirm the previous hypothesis that Clethra is highly conserved in the chloroplast genome using 75 CDSs of chloroplast genome among 40 species. The genome information and analysis results presented in this study are valuable for further study on the intraspecies identification, biogeographic analysis, and phylogenetic relationship in Clethraceae.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Junjun Yao ◽  
Fangyu Zhao ◽  
Yuanjiang Xu ◽  
Kaihui Zhao ◽  
Hong Quan ◽  
...  

Dracocephalum tanguticum and Dracocephalum moldavica are important herbs from Lamiaceae and have great medicinal value. We used the Illumina sequencing technology to sequence the complete chloroplast genome of D. tanguticum and D. moldavica and then conducted de novo assembly. The two chloroplast genomes have a typical quadripartite structure, with the gene’s lengths of 82,221 bp and 81,450 bp, large single-copy region’s (LSC) lengths of 82,221 bp and 81,450 bp, and small single-copy region’s (SSC) lengths of 17,363 bp and 17,066 bp, inverted repeat region’s (IR) lengths of 51,370 bp and 51,352 bp, respectively. The GC content of the two chloroplast genomes was 37.80% and 37.83%, respectively. The chloroplast genomes of the two plants encode 133 and 132 genes, respectively, among which there are 88 and 87 protein-coding genes, respectively, as well as 37 tRNA genes and 8 rRNA genes. Among them, the rps2 gene is unique to D. tanguticum, which is not found in D. moldavica. Through SSR analysis, we also found 6 mutation hotspot regions, which can be used as molecular markers for taxonomic studies. Phylogenetic analysis showed that Dracocephalum was more closely related to Mentha.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Abdul Latif Khan ◽  
Sajjad Asaf ◽  
Lubna ◽  
Ahmed Al-Rawahi ◽  
Ahmed Al-Harrasi

Abstract Background Salvadora persica L. (Toothbrush tree – Miswak; family-Salvadoraceae) grows in the arid-land ecosystem and possesses economic and medicinal importance. The species, genus and the family have no genomic datasets available specifically on chloroplast (cp) genomics and taxonomic evolution. Herein, we have sequenced the complete chloroplast genome of S. persica for the first time and compared it with 11 related specie’s cp genomes from the order Brassicales. Results The S. persica cp genome was 153,379 bp in length containing a sizeable single-copy region (LSC) of 83,818 bp which separated from the small single-copy region (SSC) of 17,683 bp by two inverted repeats (IRs) each 25,939 bp. Among these genomes, the largest cp genome size (160,600 bp) was found in M. oleifera, while in S. persica it was the smallest (153,379 bp). The cp genome of S. persica encoded 131 genes, including 37 tRNA genes, eight rRNA genes and 86 protein-coding genes. Besides, S. persica contains 27 forward, 36 tandem and 19 palindromic repeats. The S. persica cp genome had 154 SSRs with the highest number in the LSC region. Complete cp genome comparisons showed an overall high degree of sequence resemblance between S. persica and related cp genomes. Some divergence was observed in the intergenic spaces of other species. Phylogenomic analyses of 60 shared genes indicated that S. persica formed a single clade with A. tetracantha with high bootstrap values. The family Salvadoraceae is closely related to Capparaceae and Petadiplandraceae rather than to Bataceae and Koberliniacaea. Conclusion The current genomic datasets provide pivotal genetic resources to determine the phylogenetic relationships, genome evolution and future genetic diversity-related studies of S. persica in complex angiosperm families.


2019 ◽  
Author(s):  
Han Xu

Abstract Backgroud: Amaranthus palmeri, A. tuberculatus and A. arenicola are alien invasive dioecious amaranths originated from North America which have similar morphology and complex taxonomic relationship with their relatives. To search for effective molecular methods and accurate species boundary for detecting the alien invasive species, we sequenced whole chloroplast genome of 6 amaranths species, of which A. palmeri , A. arenicola , A. retroflexus and A. dubius are the first reports.Results: The complete chloroplast genome of 6 species has a circular molecular structure of 150,454 to 150,939 bp in length with 36.6% of GC content and contains a total of 134 genes, including 89 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. There are a total of 802 parsimony-informative (PI) sites within genes and intergenic spacers. The rpl22-rps19 , ndhG-I , rpl 32- trnLUAG , trnPUGG-psaJ and ccsA - ndhD are the hotspots in the genus. And the 1,601 bp fragment from rpl32 to psaC has contained maximum variants with 82 PI sites. A. arenicola differs from A. tuberculatus with 19 PI sites located in 14 genes and spacers separately. The regions for differentiate A. dubius , A. hypochondriacus and A. caudatus of the Hybrid complex only fasten on 2 coding genes and 5 intergenic spacers. The patristic distances (0.00001-0.00005) among the three species are approximate to the distance (0.00005) between individuals of A. tuberculatus . Conformed to dioecious and monoecious distinctions but different with previous phylogenetic studies, A. palmeri clustered with A. arenicola and A. tuberculatus and formed a stable clade of subgen. Acnida .Conclusion: The chloroplast genome has played a role in offering enough information for discrimination and phylogenetic relationship among the Amaranthus subgen. Acnida . The most valuable regions of chloroplast genome in Amaranthus are intergenic spacers and could differentiate A. arenicola from A. tuberculatus better. Subsequently, much more Amaranthus species should be sequenced and analyzed complementally in the future.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1692
Author(s):  
Li Gu ◽  
Ting Su ◽  
Ming-Tai An ◽  
Guo-Xiong Hu

Oreocharis esquirolii, a member of Gesneriaceae, is known as Thamnocharis esquirolii, which has been regarded a synonym of the former. The species is endemic to Guizhou, southwestern China, and is evaluated as vulnerable (VU) under the International Union for Conservation of Nature (IUCN) criteria. Until now, the sequence and genome information of O. esquirolii remains unknown. In this study, we assembled and characterized the complete chloroplast (cp) genome of O. esquirolii using Illumina sequencing data for the first time. The total length of the cp genome was 154,069 bp with a typical quadripartite structure consisting of a pair of inverted repeats (IRs) of 25,392 bp separated by a large single copy region (LSC) of 85,156 bp and a small single copy region (SSC) of18,129 bp. The genome comprised 114 unique genes with 80 protein-coding genes, 30 tRNA genes, and four rRNA genes. Thirty-one repeat sequences and 74 simple sequence repeats (SSRs) were identified. Genome alignment across five plastid genomes of Gesneriaceae indicated a high sequence similarity. Four highly variable sites (rps16-trnQ, trnS-trnG, ndhF-rpl32, and ycf 1) were identified. Phylogenetic analysis indicated that O. esquirolii grouped together with O. mileensis, supporting resurrection of the name Oreocharis esquirolii from Thamnocharisesquirolii. The complete cp genome sequence will contribute to further studies in molecular identification, genetic diversity, and phylogeny.


Sign in / Sign up

Export Citation Format

Share Document