scholarly journals Soil Organic Matter Degradation in Long-Term Maize Cultivation and Insufficient Organic Fertilization

Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1217
Author(s):  
Jiří Balík ◽  
Martin Kulhánek ◽  
Jindřich Černý ◽  
Ondřej Sedlář ◽  
Pavel Suran

Soil organic matter carbon (CSOM) compounds degradation was observed in long-term field experiments with silage maize monoculture. Over a period of 26 years, the content of carbon in topsoil decreased by 22% in control unfertilized plots compared to 25% and 26% in treatments fertilized annually with mineral nitrogen. With annual wheat straw application (together with mineral N), the content of CSOM decreased by 8%. Contrary to that, the annual application of farmyard manure resulted in a CSOM increase of 16%. The ratio of carbon produced by maize related to total topsoil CSOM content ranged between 8.1–11.8%. In plots with mineral N fertilization, this ratio was always higher than in the unfertilized control plots. With the weaker soil extraction agent (CaCl2), the ratio of carbon produced by maize was determined to be 17.9–20.7%. With stronger extraction agent (pyrophosphate) it was only 10.2–14.6%. This shows that maize produced mostly unstable carbon compounds. Mineral N application resulted in stronger mineralization of original and stable organic matter compared to the unfertilized control. However, the increase of maize-produced carbon content in fertilized plots did not compensate for the decrease of “old” organic matter. As a result, a tendency to decrease total CSOM content in plots with mineral N applied was observed.

Geoderma ◽  
2021 ◽  
Vol 383 ◽  
pp. 114700
Author(s):  
Claudia Savarese ◽  
Marios Drosos ◽  
Riccardo Spaccini ◽  
Vincenza Cozzolino ◽  
Alessandro Piccolo

2014 ◽  
Vol 94 (3) ◽  
pp. 281-294 ◽  
Author(s):  
W. Feng ◽  
M. Xu ◽  
M. Fan ◽  
S. S. Malhi ◽  
J. J. Schoenau ◽  
...  

Feng, W., Xu, M., Fan, M., Malhi, S. S., Schoenau, J. J., Six, J. and Plante, A. F. 2014. Testing for soil carbon saturation behavior in agricultural soils receiving long-term manure amendments. Can. J. Soil Sci. 94: 281–294. Agricultural soils are typically depleted in soil organic matter compared with their undisturbed counterparts, thus reducing their fertility. Organic amendments, particularly manures, provide the opportunity to restore soil organic matter stocks, improve soil fertility and potentially sequester atmospheric carbon (C). The application of the soil C saturation theory can help identify soils with large C storage potentials. The goal of this study was to test whether soil C saturation can be observed in various soil types in agricultural ecosystems receiving long-term manure amendments. Seven long-term agricultural field experiments from China and Canada were selected for this study. Manure amendments increased C concentrations in bulk soil, particulate organic matter+sand, and silt+clay fractions in all the experiments. The increase in C concentrations of silt+clay did not fit the asymptotic regression as a function of C inputs better than the linear regression, indicating that silt+clay did not exhibit C saturation behavior. However, 44% of calculated C loading values for silt+clay were greater than the presumed maximal C loading, suggesting that this maximum may be greater than 1 mg C m−2 for many soils. The influences of soil mineral surface properties on C concentrations of silt+clay fractions were site specific. Fine soil particles did not exhibit C saturation behavior likely because current C inputs were insufficient to fill the large C saturation deficits of intensely cultivated soils, suggesting these soils may continue to act as sinks for atmospheric C.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2190
Author(s):  
Ranjan Laik ◽  
B. H. Kumara ◽  
Biswajit Pramanick ◽  
Santosh Kumar Singh ◽  
Nidhi ◽  
...  

Labile soil organic matter pools (LSOMp) are believed to be the most sensitive indicator of soil quality when it is changed rapidly with varied management practices. In sub-tropical climates, the turnover period of labile pools is quicker than in temperate climates. Organic amendments are of importance in improve the LSOMp for a temperate climate and may be helpful in sub-tropical climates as well. Hence, the status of LSOMp was studied in long term farmyard manure (FYM) amended soils under wheat (Triticum aestivum L.) and pearl millet (Pennisetum glaucum L.) cropping systems in sub-tropical arid conditions. At the same time, we also attempt to determine the impact of mineral nitrogen (N) application in these pools. In this study, dissolved organic matter (DOM), microbial biomass (MB), and light fraction (LF) were isolated in the management practices involving different modes and rates of FYM applications along with the application of nitrogenous fertilizer. C and N contents of the labile pools were analyzed in the soil samples at different periods after FYM applications. Among the different pools, microbial biomass carbon (MBC) and dissolved organic carbon (DOC) were changed significantly with different rates and modes of FYM application and mineral N application. Application of FYM at 15 Mg ha−1 in both the seasons + 120 kg ha−1 mineral N resulted in significantly higher MBC and DOC as compared to all of the other treatments. This treatment also resulted in 13.75% and 5.8% more MBC and DOC, respectively, as compared to the amount of MBC and DOC content in the control plot where FYM and mineral N were not applied. Comparing the labile organic matter pools of 45 years of FYM amendment with initial values, it was found that the dissolved organic carbon, microbial biomass carbon, and light fraction carbon were increased up to the maximum extent of about 600, 1200, and 700 times, respectively. The maximum amount of DOM (562 mg kg−1 of DOC and 70.1 mg kg−1 of DON), MB (999 mg kg−1 of MBC and 158.4 mg kg−1 of MBN), LF (2.61 g kg−1 of LFC and 154.6 g kg−1 of LFN) were found in case of both season applied FYM as compared to either summer or winter applied FYM. Concerning the different rates of FYM application, 15 Mg ha−1 FYM also resulted in a significantly higher amount of DOM, MB, and LF as compared to other FYM rates (i.e., 5 Mg ha−1 and 10 Mg ha−1). Amongst different pools, MB was found to be the most sensitive to management practices in this study. From this study, it was found that the long-term FYM amendment in sub-tropical soil along with mineral N application can improve the LSOMp of the soil. Thus, it can be recommended that the application of FYM at 15 Mg ha−1 in summer and winter with +120 kg ha−1 mineral N can improve SOC and its labile pools in subtropical arid soils. Future studies on LSOMp can be carried out by considering different cropping systems of subtropical climate.


2002 ◽  
Vol 51 (1-2) ◽  
pp. 139-146 ◽  
Author(s):  
É. Bircsák ◽  
Tamás Németh

Long-term N fertilization experiments were established with identical treatments at two different growing areas in Hungary: one on a calcareous sandy soil (Őrbottyán) and the other on a calcareous chernozem soil (Nagyhörcsök). The aim was to create differences in mineral-N content in the soil profiles in order to determine their N supplying capacity and to establish whether the accumulated nitrate may be regarded as a supply index for crop production. The results showed that under certain environmental conditions N may accumulate in the soil profile in the form of nitrate, resulting from N fertilization in previous years, to such an extent that it must be taken into consideration when determining the fertilizer rates to be applied. This is important not only from the point of view of economical management and environment protection, but also for reaching better yield quality. The calculations can be reliably performed if they are based on the measurement and calibration of the soil's mineral-N content. The environmental importance of such calibration experiments is that by estimating the utilization of N from the mineral-N pool, the additional costs incurred due to over-fertilization can be eliminated, and at the same time the potential danger of NO 3 leaching to the groundwater can be reduced. Extrapolation of the experimental results to farm scale can lead to both economical and environmental achievements.


Sign in / Sign up

Export Citation Format

Share Document