scholarly journals Constructing Continuous Proton-Conducting Highways within Sulfonated Poly(Arylene Ether Nitrile) Composite Membrane by Incorporating Amino-Sulfo-Bifunctionalized GO

Polymers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1005 ◽  
Author(s):  
Tao Cheng ◽  
Xuechun Zhang ◽  
Yan Ma ◽  
Yumin Huang ◽  
Xiaobo Liu

To obtain a proton exchange membrane (PEM) with high proton conductivity and low methanol permeability, a novel amino-sulfo-bifunctionalized GO (NSGO) was synthesized and explored as a filler for sulfonated poly(arylene ether nitrile) (SPEN). The result indicated that the microstructure of composite membranes was rearranged by NSGO and strong acid–base interactions were formed between fillers and the SPEN matrix, affording enhanced thermal, mechanical, and dimensional stabilities. Moreover, it was found that NSGO fillers were uniformly dispersed in the SPEN matrix, generating efficient proton-conducting paths along the SPEN/NSGO interface. Meanwhile, the sulfonic and amino groups of NSGO served as additional proton hopping sites to connect the ionic clusters in the SPEN matrix, creating interconnected and long-range ionic pathways. In such a way, proton-conducting highways with low energy barriers are constructed, which enhance the proton conductivity of the composite membranes via the Grotthuss mechanism. Furthermore, the composite membranes also effectively prevent methanol permeation, and therefore high selectivity (the ratio of proton conductivity and methanol permeability) is endowed. Compared to SPEN membrane, a 3.6-fold increase in selectivity is obtained for the optimal composite membrane. This study will provide a new strategy for the preparation of high-performance PEM.

2021 ◽  
pp. 095400832110394
Author(s):  
Yan Ma ◽  
Kaixu Ren ◽  
Ziqiu Zeng ◽  
Mengna Feng ◽  
Yumin Huang

To improve the performances of sulfonated poly (arylene ether nitrile) (SPEN)–based proton exchange membranes (PEMs) in direct methanol fuel cells (DMFCs), the copper phthalocyanine grafted graphene oxide (CP-GO) was successfully prepared via in situ polymerization and subsequently incorporated into SPEN as filler to fabricate a series of SPEN/CP-GO-X (X represents for the mass ratio of CP-GO) composite membranes. The water absorption, swelling ratio, mechanical properties, proton conductivity, and methanol permeability of the membranes were systematically studied. CP-GO possesses good dispersion and compatibility with SPEN matrix, which is propitious to the formation of strong interfacial interactions with the SPEN, so as to provide more efficient transport channels for proton transfer in the composite membranes and significantly improve the proton conductivity of the membranes. Besides, the strong π–π conjugation interactions between CP-GO and SPEN matrix can make the composite membranes more compact, blocking the methanol transfer in the membranes, and significantly reducing the methanol permeability. Consequently, the SPEN/CP-GO-1 composite membrane displayed outstanding tensile strength (58 MPa at 100% RH and 25°C), excellent proton conductivity (0.178 S cm−1 at 60°C), and superior selectivity (5.552 × 105 S·cm−3·s). This study proposed a new method and strategy for the preparation of high performance PEMs.


Polymers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1037 ◽  
Author(s):  
Hang Wang ◽  
Xiangxiang Li ◽  
Xiaojie Li ◽  
Xi Feng ◽  
Weimin Kang ◽  
...  

In this work, we reported a novel proton exchange membrane (PEM) with an ion-conducting pathway. The hierarchical nanofiber structure was prepared via in situ self-assembling 1,3:2,4-dibenzylidene-d-sorbitol (DBS) supramolecular fibrils on solution-blown, sulfonated poly (ether sulfone) (SPES) nanofiber, after which the composite PEM was prepared by incorporating hierarchical nanofiber into the chitosan polymer matrix. Then, the effects of incorporating the hierarchical nanofiber structure on the thermal stability, water uptake, dimensional stability, proton conductivity, and methanol permeability of the composite membranes were investigated. The results show that incorporation of hierarchical nanofiber improves the water uptake, proton conductivity, and methanol permeability of the membranes. Furthermore, the composite membrane with 50% hierarchical nanofibers exhibited the highest proton conductivity of 0.115 S cm−1 (80 °C), which was 69.12% higher than the values of pure chitosan membrane. The self-assembly allows us to generate hierarchical nanofiber among the interfiber voids, and this structure can provide potential benefits for the preparation of high-performance PEMs.


2022 ◽  
Author(s):  
Mengna Feng ◽  
Yan Ma ◽  
JiaJia Chang ◽  
Jing Lin ◽  
Ying Xu ◽  
...  

Abstract As the core component of proton exchange membrane fuel cell, proton exchange membranes (PEM) have attracted much attention of researchers. To trade-off the proton conduction, dimensional stability and anti-oxidation ability, graphene oxide (GO) and acidized multi-walled carbon nanotubes (MWCNT) using calcium ion as coordination bridge (GO-Ca2+-MWCNT) was synthesized, and then incorporating into sulfonated poly(arylene ether nitrile) (SPEN) to fabricate SPEN/GO-Ca2+-MWCNT organic-inorganic composite membranes by solution-casting method and explore the influence of varying loading on performances as PEM. It was found that the proton conductivity of the composite membranes was higher than that of SPEN, while maintaining better dimensional stability, excellent anti-oxidation ability and good mechanical properties. All of these were attributed to the formation of three-dimensional structure between GO and MWCNT bridged by Ca2+. Particularly, the SPEN/GO-Ca2+-MWCNT-1 composite membrane exhibited excellent tensile strength of 71.45 MPa, better thermal stability as well as high proton conductivity (0.054 S/cm at 30 ℃, and 0.193 S/cm at 90 ℃), above 10-2 S/cm, satisfying the requirement of fuel cells. All in all, the results indicate that the filler with three-dimensional network structure can effectively improve the performances of SPEN, and the prepared composite membranes show potential applications in many fields.


2012 ◽  
Vol 15 (2) ◽  
pp. 83-88 ◽  
Author(s):  
Takayuki Hirashige ◽  
Tomoichi Kamo ◽  
Takao Ishikawa ◽  
Takeyuki Itabashi

We investigated inorganic-organic membranes consisting of sulfonated-poly(ether sulfone) (S-PES) and ZrO2·nH2O with the aim of improving proton conductivity and blocking methanol. We prepared excellent uniform membranes by the method using ZrOCl28H2O as a precursor. The proton conductivity of the ZrO2·nH2O/S-PES (EW=850) composite membrane with 50wt% ZrO2·nH2O content was about four times higher than that of S-PES (EW=850). On the other hand, the methanol permeability of the ZrO2·nH2O/S-PES (EW=850) composite membrane with 50wt% ZrO2·nH2O content was almost the same as that of S-PES (EW=850). These results mean in the composite membranes, the trade-off relationship between proton conductivity and methanol permeability found in S-PES was improved. The initial I-V performance of an MEA consisting of the ZrO2·nH2O/S-PES (EW=850) composite membrane with 50wt% ZrO2·nH2O content showed a maximum power density of 65 mW cm-2 at 260 mA cm-2.


2018 ◽  
Vol 31 (7) ◽  
pp. 753-766
Author(s):  
Jinghe Hou ◽  
Shanshan Liu ◽  
Xiang Sun ◽  
Zhenyu Xiao ◽  
Huili Ding

In this article, novel nanocomposite proton exchange membranes (PEMs) were prepared by embedding imino-containing phosphorylated silica nanoparticles into a sulfonated poly(arylene thioether sulfone) (SPTES) polymer matrix. SPTES was synthesized via condensation polymerization of 4,4′-thiobisbenzenethiol, 4,4′-difluorodiphenylsulfone, and disodium 3,3′-disulfonate-4,4′-difluorodiphenylsulfone. The imino-containing phosphorylated silica particles (Si-imP) were prepared by the Kabachnik–Fields reaction, which is confirmed by scanning electron microscopy, Fourier-transform infrared spectroscopy, and energy dispersive spectroscopy. The results showed that the Si-imP were uniformly distributed in the composite membrane. The properties of the composite membranes, including thermal stability, water uptake, swelling ratio, oxidative stability, and proton conductivity, were thoroughly evaluated. Experimental results indicated that Si-imP may be effective reinforcement materials for SPTES membranes. It is noteworthy that an increase in proton conductivity from 0.138 S cm−1 of the SPTES control membrane to 0.173 S cm−1 of the composite membrane was achieved at the Si-imP content of 5 wt% under fully hydrated conditions at 80°C. This finding primarily stems from the fact that the Si-imP could be linked with the sulfonate ion clusters of SPTES to form more continuous ionic networks. These networks act as efficient proton-hopping pathways to enhanced proton conductivity. The nanocomposite membranes are demonstrated to be promising candidates as new polymeric electrolyte materials for PEM fuel cells operated at medium temperatures.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 430-442 ◽  
Author(s):  
Rajdeep Mukherjee ◽  
Arun Kumar Mandal ◽  
Susanta Banerjee

AbstractSulfopropylated polysilsesquioxane and –COOH containing fluorinated sulfonated poly(arylene ether sulfone) composite membranes (SPAES-SS-X) have been prepared via an in situ sol–gel reaction through the solution casting technique. The composite membranes showed excellent thermal and chemical stability, compared to the pristine SPAES membrane. The uniform dispersion of the sulfonated SiOPS nanoparticles on the polymer matrix was observed from the scanning electron microscope images. Atomic force microscopy and transmission electron microscopy images indicated significantly better phase-separated morphology and connectivity of the ionic domains of the composite membranes than the pristine SPAES membrane. The composite membranes showed considerable improvement in proton conductivity and oxidative stability than the pristine copolymer membrane under similar test conditions.


2016 ◽  
Vol 1 (1) ◽  
pp. 14
Author(s):  
Siti Wafiroh ◽  
Suyanto Suyanto ◽  
Yuliana Yuliana

AbstrakDi era globalisasi ini, kebutuhan bahan bakar fosil semakin meningkat dan ketersediannya semakin menipis. Oleh karena itu, dibutuhkan bahan bakar alternatif seperti Proton Exchange Membrane Fuel Cell (PEMFC). Tujuan dari penelitian ini adalah membuat dan mengkarakterisasi membran komposit kitosan-sodium alginat dari rumput laut coklat (Sargassum sp.) terfosforilasi sebagai Proton Exchange Membrane Fuel Cell (PEMFC). PEM dibuat dengan 4 variasi perbandingan konsentrasi antara kitosan dengan sodium alginat 8:0, 8:1, 8:2, dan 8:4 (b/b). Membran komposit kitosan-sodium alginat difosforilasi dengan STPP 2N. Karakterisasi PEM meliputi: uji tarik, swelling air, kapasitas penukar ion, FTIR, SEM, permeabilitas metanol, dan konduktivitas proton. Berdasarkan hasil analisis tersebut, membran yang optimal adalah perbandingan 8:1 (b/b) dengan nilai modulus young sebesar 0,0901 kN/cm2, swelling air sebesar 19,14 %, permeabilitas metanol sebesar 72,7 x 10-7, dan konduktivitas proton sebesar 4,7 x 10-5 S/cm. Membran komposit kitosan-sodium alginat terfosforilasi memiliki kemampuan yang cukup baik untuk bisa diaplikasikan sebagai membran polimer elektrolit dalam PEMFC. Kata kunci: kitosan, sodium alginat, terfosforilasi, PEMFC  AbstractIn this globalization era, the needs of fossil fuel certainly increases, but its providence decreases. Therefore, we need alternative fuels such as Proton Exchange Membrane Fuel Cell (PEMFC). The purpose of this study is preparationand characterization of phosphorylated chitosan-sodium alginate composite membrane from brown seaweed (Sargassum sp.) as Proton Exchange Membrane Fuel Cell (PEMFC). PEM is produced with 4 variations of concentration ratio between chitosan and sodium alginate 8:0, 8:1, 8:2, and 8:4 (w/w). Chitosan-sodium alginate composite membrane phosphorylated with 2 N STPP. The characterization of PEM include: tensile test, water swelling, ion exchange capacity, FTIR, SEM, methanol permeability, and proton conductivity. Based on the analysis result, the optimal membrane is ratio of 8:1 (w/w) with the value of Young’s modulus about 0.0901 kN/cm2, water swelling at 19.14%, methanol permeability about 72.7 x 10-7, and proton conductivity about 4.7 x 10-5 S/cm. The phosphorylated chitosan-sodium alginate composite membrane has good potentials for the application of the polymer electrolyte membrane in PEMFC. Keywords: chitosan, sodium alginate, phosphorylated, PEMFC


2020 ◽  
pp. 095400832096816
Author(s):  
Hailin Yu ◽  
Yinghan Wang

Aldehyde terminated sulfonated poly (arylene ether sulfone) (SPAES-CHO) is prepared by a series of nucleophilic substitution reaction based on SPAES in this paper. Novel SPAES-graft-SPVA (SPAES-g-SPVA) membranes are fabricated by acetal reaction between SPAES-CHO and different amounts of sulfonated poly (vinyl alcohol) (SPVA). The 1H-NMR and FTIR indicate the successful preparation of SPAES-CHO and SPAES-g-SPVA membranes. With the introduction of SPVA, the SPAES-g-SPVA membranes have much lower methanol permeability than pure SPAES membrane and Nafion117 membrane. The methanol permeability coefficients of the SPAES-g-SPVA membranes decrease from 3.41 × 10−7 cm2 s−1 to 1.67 × 10−7 cm2 s−1 with the increase of SPVA content. And the proton conductivity of all the membranes is higher than 15 mS cm−1 at 25°C. Moreover, SPAES-g-SPVA membranes exhibit high proton selectivity. Especially, SPAES-g-SPVA-30% membrane has the highest proton selectivity, which is nearly five times higher than Nafion117.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1570 ◽  
Author(s):  
A. Rico-Zavala ◽  
J. L. Pineda-Delgado ◽  
A. Carbone ◽  
A. Saccà ◽  
E. Passalacqua ◽  
...  

The aim of this work is the evaluation of a Sulfonated Poly Ether-Ether Ketone (S-PEEK) polymer modified by the addition of pure Santa Barbara Amorphous-15 (SBA-15, mesoporous silica) and SBA-15 previously impregnated with phosphotungstic acid (PWA) fillers (PWA/SBA-15) in order to prepare composite membranes as an alternative to conventional Nafion® membranes. This component is intended to be used as an electrolyte in electrochemical energy systems such as hydrogen and methanol Proton Exchange Membrane Fuel Cell (PEMFC) and Electrochemical Hydrogen Pumping (EHP). The common requirements for all the applications are high proton conductivity, thermomechanical stability, and fuel and oxidant impermeability. The morphology of the composite membranes was investigated by Scanning Electron Microscopy- Energy Dispersive X-ray Spectroscopy (SEM-EDS) analysis. Water Uptake (Wup), Ion Exchange Capacity (IEC), proton conductivity, methanol permeability and other physicochemical properties were evaluated. In PEMFC tests, the S-PEEK membrane with a 10 wt.% SBA-15 loading showed the highest performance. For EHP, the inclusion of inorganic materials led to a back-diffusion, limiting the compression capacity. Concerning methanol permeability, the lowest methanol crossover corresponded to the composites containing 5 wt.% and 10 wt.% SBA-15.


Sign in / Sign up

Export Citation Format

Share Document