scholarly journals Polysaccharide Based Scaffolds for Soft Tissue Engineering Applications

Polymers ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 1 ◽  
Author(s):  
Sanjay Tiwari ◽  
Rahul Patil ◽  
Pratap Bahadur

Soft tissue reconstructs require materials that form three-dimensional (3-D) structures supportive to cell proliferation and regenerative processes. Polysaccharides, due to their hydrophilicity, biocompatibility, biodegradability, abundance, and presence of derivatizable functional groups, are distinctive scaffold materials. Superior mechanical properties, physiological signaling, and tunable tissue response have been achieved through chemical modification of polysaccharides. Moreover, an appropriate formulation strategy enables spatial placement of the scaffold to a targeted site. With the advent of newer technologies, these preparations can be tailor-made for responding to alterations in temperature, pH, or other physiological stimuli. In this review, we discuss the developmental and biological aspects of scaffolds prepared from four polysaccharides, viz. alginic acid (ALG), chitosan (CHI), hyaluronic acid (HA), and dextran (DEX). Clinical studies on these scaffolds are also discussed.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mary Beth Wandel ◽  
Craig A. Bell ◽  
Jiayi Yu ◽  
Maria C. Arno ◽  
Nathan Z. Dreger ◽  
...  

AbstractComplex biological tissues are highly viscoelastic and dynamic. Efforts to repair or replace cartilage, tendon, muscle, and vasculature using materials that facilitate repair and regeneration have been ongoing for decades. However, materials that possess the mechanical, chemical, and resorption characteristics necessary to recapitulate these tissues have been difficult to mimic using synthetic resorbable biomaterials. Herein, we report a series of resorbable elastomer-like materials that are compositionally identical and possess varying ratios of cis:trans double bonds in the backbone. These features afford concomitant control over the mechanical and surface eroding degradation properties of these materials. We show the materials can be functionalized post-polymerization with bioactive species and enhance cell adhesion. Furthermore, an in vivo rat model demonstrates that degradation and resorption are dependent on succinate stoichiometry in the elastomers and the results show limited inflammation highlighting their potential for use in soft tissue regeneration and drug delivery.


Author(s):  
Yi Zhang ◽  
Richard T. Tran ◽  
Dipendra Gyawali ◽  
Jian Yang

Finding an ideal biomaterial with the proper mechanical properties and biocompatibility has been of intense focus in the field of soft tissue engineering. This paper reports on the synthesis and characterization of a novel crosslinked urethane-doped polyester elastomer (CUPOMC), which was synthesized by reacting a previously developed photocrosslinkable poly (octamethylene maleate citrate) (POMC) prepolymers (pre-POMC) with 1,6-hexamethylene diisocyanate (HDI) followed by thermo- or photo-crosslinking polymerization. The mechanical properties of the CUPOMCs can be tuned by controlling the molar ratios of pre-POMC monomers, and the ratio between the prepolymer and HDI. CUPOMCs can be crosslinked into a 3D network through polycondensation or free radical polymerization reactions. The tensile strength and elongation at break of CUPOMC synthesized under the known conditions range from 0.73±0.12MPa to 10.91±0.64MPa and from 72.91±9.09% to 300.41±21.99% respectively. Preliminary biocompatibility tests demonstrated that CUPOMCs support cell adhesion and proliferation. Unlike the pre-polymers of other crosslinked elastomers, CUPOMC pre-polymers possess great processability demonstrated by scaffold fabrication via a thermally induced phase separation method. The dual crosslinking methods for CUPOMC pre-polymers should enhance the versatile processability of the CUPOMC used in various conditions. Development of CUPOMC should expand the choices of available biodegradable elastomers for various biomedical applications such as soft tissue engineering.


2004 ◽  
Vol 71A (1) ◽  
pp. 81-89 ◽  
Author(s):  
Yang Cao ◽  
Malcolm R. Davidson ◽  
Andrea J. O'Connor ◽  
Geoffrey W. Stevens ◽  
Justin J. Cooper-White

Biomaterials ◽  
2010 ◽  
Vol 31 (32) ◽  
pp. 8141-8152 ◽  
Author(s):  
Zhilian Yue ◽  
Feng Wen ◽  
Shujun Gao ◽  
Ming Yi Ang ◽  
Pramoda K. Pallathadka ◽  
...  

RSC Advances ◽  
2014 ◽  
Vol 4 (60) ◽  
pp. 32017-32023 ◽  
Author(s):  
Adrien Leroy ◽  
Assala Al Samad ◽  
Xavier Garric ◽  
Sylvie Hunger ◽  
Danièle Noël ◽  
...  

Degradable and biocompatible networks have been prepared via thiol–yne photochemistry from novel alkyne multifunctional PCL. The mechanical properties of these cross-linked biomaterials could make them good candidates for soft tissues scaffolds.


2015 ◽  
Vol 68 (9) ◽  
pp. 1409 ◽  
Author(s):  
Justin M. Sirrine ◽  
Allison M. Pekkanen ◽  
Ashley M. Nelson ◽  
Nicholas A. Chartrain ◽  
Christopher B. Williams ◽  
...  

Additive manufacturing, or three-dimensional (3D) printing, has emerged as a viable technique for the production of vascularized tissue engineering scaffolds. In this report, a biocompatible and biodegradable poly(tri(ethylene glycol) adipate) dimethacrylate was synthesized and characterized for suitability in soft-tissue scaffolding applications. The polyester dimethacrylate exhibited highly efficient photocuring, hydrolyzability, and 3D printability in a custom microstereolithography system. The photocured polyester film demonstrated significantly improved cell attachment and viability as compared with controls. These results indicate promise of novel, printable polyesters for 3D patterned, vascularized soft-tissue engineering scaffolds.


Sign in / Sign up

Export Citation Format

Share Document