scholarly journals Effect of Formation Route on the Mechanical Properties of the Polyethersulfone Composites Reinforced with Glass Fibers

Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1364 ◽  
Author(s):  
Galal Sherif ◽  
Dilyus Chukov ◽  
Victor Tcherdyntsev ◽  
Valerii Torokhov

Interfacial interaction is one of the most important factors that affect the mechanical properties of the fiber reinforced composites. The effect of fabrics′ sizing removal from glass fibers’ surface by thermal treatment on the mechanical characteristics of polyethersulfone based composites at different fiber to polymer weight ratios was investigated. Three fiber to polymer weight ratios of 50/50, 60/40, and 70/30 were studied. Flexural and shear tests were carried out to illustrate the mechanical properties of the composites; the structure was studied using Fourier-transform infrared spectroscopy and scanning electron microscopy. It was shown that solution impregnation of glass fabrics with polyethersulfone before compression molding allows to achieve good mechanical properties of composites. The thermal treatment of glass fabrics before impregnation results in an increase in flexural and shear strength for all the composites due to the improvement of fiber–matrix interaction.

Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 902 ◽  
Author(s):  
Galal Sherif ◽  
Dilyus I. Chukov ◽  
Victor V. Tcherdyntsev ◽  
Valerii G. Torokhov ◽  
Dmitry D. Zherebtsov

The effect of thermal treatment of glass fibers (GF) on the mechanical and thermo-mechanical properties of polysulfone (PSU) based composites reinforced with GF was investigated. Flexural and shear tests were used to study the composites’ mechanical properties. A dynamic mechanical analysis (DMA) and a heat deflection temperature (HDT) test were used to study the thermo-mechanical properties of composites. The chemical structure of the composites was studied using IR-spectroscopy, and scanning electron microscopy (SEM) was used to illustrate the microstructure of the fracture surface. Three fiber to polymer ratios of initial and preheated GF composites (50/50, 60/40, 70/30 (wt.%)) were studied. The results showed that the mechanical and thermo-mechanical properties improved with an increase in the fiber to polymer ratio. The interfacial adhesion in the preheated composites enhanced as a result of removing the sizing coating during the thermal treatment of GF, which improved the properties of the preheated composites compared with the composites reinforced with initial untreated fibers. The SEM images showed a good distribution of the polymer on the GF surface in the preheated GF composites.


2016 ◽  
Vol 29 (7) ◽  
pp. 849-856
Author(s):  
Tao Jiang ◽  
Chengzhen Geng ◽  
Hanmei Zhou ◽  
Ai Lu

Two kinds of glass fibers with round (RdGF) and rectangle cross-sections (RcGF) were used to reinforce polyphenylene sulfide (PPS), respectively. In this way, the effect of fiber cross-section shape on rheological and mechanical properties of the composites was studied for the first time. Results showed that the viscosity of the composites reinforced with RcGF was much lower than that of RdGF composites, owing to their higher sensitivity to flow. As a result, PPS/RcGF composites could be injection-molded at high fiber contents. Moreover, RcGF showed a better reinforcing effect on mechanical properties of PPS. So the use of RcGF could better balance the contradiction between processability and reinforcing effect for glass fiber-reinforced composites. Various characterizations were carried out to reveal the reinforcing mechanism. This work demonstrated the importance of fiber cross-section shape on design and production of fiber-reinforced composites.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2064 ◽  
Author(s):  
Stanisław Kuciel ◽  
Patrycja Bazan ◽  
Aneta Liber-Kneć ◽  
Aneta Gądek-Moszczak

The paper evaluated the possibility of potential reinforcing of poly(oxymethylene) (POM) by glass fiber and the influence of fiberglass addition on mechanical properties under dynamic load. Four types of composites with glass fiber and another four with carbon fiber were produced. The fiber content ranged from 5% to 40% by weight. In the experimental part, the basic mechanical and fatigue properties of POM-based composites were determined. The impact of water absorption was also investigated. The influence of fiber geometry on the mechanical behavior of fiber-reinforced composites of various diameters was determined. To refer to the effects of reinforcement and determine the features of the structure scanning electron microscopy images were taken. The results showed that the addition of up to 10 wt %. fiberglass increases the tensile properties and impact strength more than twice, the ability to absorb energy also increases in relation to neat poly(oxymethylene). Fiber geometry also has a significant impact on the mechanical properties. The study of the mechanical properties at dynamic loads over time suggests that composites filled with a smaller fiber diameter have better fatigue properties.


2012 ◽  
Vol 06 ◽  
pp. 646-651 ◽  
Author(s):  
Wen Ma ◽  
Fushun Liu

Voids are inevitable in the fabrication of fiber reinforced composites and have a detrimental impact on mechanical properties of composites. Different void contents were acquired by applying different vacuum bag pressures. Ultrasonic inspection and ablation density method were adopted to measure the ultrasonic characteristic parameters and average porosity, the characterization of voids' distribution, shape and size were carried out through metallographic analysis. Effects of void content on the tensile, flexural and interlaminar shear properties and the ultrasonic characteristic parameters were discussed. The results showed that, as vacuum bag pressure went from -50kPa to -98kPa, the voids content decreased from 4.36 to 0.34, the ultrasonic attenuation coefficient decreased, but the mechanical strengths all increased.


2011 ◽  
Vol 332-334 ◽  
pp. 121-125
Author(s):  
Xing Mei Guo ◽  
Yi Ping Qiu

The use of natural plant fibers as reinforcing fillers in fiber-polymer composites has drawn much interest in recent years. Natural plant fibers as reinforcing fillers have several advantages over inorganic fillers such as glass fibers; they are abundant, readily available, renewable, inexpensive, biodegradable, of low density, and of high specific strength. Hemp fibers are one of the most attractive natural plant fibers for fiber-reinforced composites because of their exceptional specific stiffness. In this review, we summarize recent progress in developments of the hemp fiber reinforced composites such as hemp fiber reinforced unsaturated polyester (UPE), hemp fiber reinforced polypropylene (PP), hemp fiber reinforced epoxy composites, and so on, illustrate with examples how they work, and discuss their intrinsic fundamentals and optimization designs. We are expecting the review to pave the way for developing fiber-polymer composites with higher strength.


Sign in / Sign up

Export Citation Format

Share Document