scholarly journals Synthesis, Structural Characterization and Ligand-Enhanced Photo-Induced Color-Changing Behavior of Two Hydrogen-Bonded Ho(III)-Squarate Supramolecular Compounds

Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1369 ◽  
Author(s):  
Wang ◽  
Ke ◽  
Feng ◽  
Ho ◽  
Chang ◽  
...  

Two coordination polymers (CPs) with chemical formulas, [Ho2(C4O4)2(C2O4)(H2O)8]·4H2O (1) and [Ho(C4O4)1.5(H2O)3] (2), (C4O42− = dianion of squaric acid, C2O42− = oxalate), have been synthesized and their structures were determined by single-crystal X-ray diffractometer (XRD). In compound 1, the coordination environment of Ho(III) ion is eight-coordinate bonded to eight oxygen atoms from two squarate, one oxalate ligands and four water molecules. The squarates and oxalates both act as bridging ligands with 1,2-bis-monodentate and bis-chelating coordination modes, respectively, connecting the Ho(III) ions to form a one-dimensional (1D) ladder-like framework. Adjacent ladders are interlinked via O–HO hydrogen bonding interaction to form a hydrogen-bonded two-dimensional (2D) layered framework and then arranged orderly in an AAA manner to construct its three-dimensional (3D) supramolecular architecture. In compound 2, the coordination geometry of Ho(III) is square-antiprismatic eight coordinate bonded to eight oxygen atoms from five squarate ligands and three water molecules. The squarates act as bridging ligands with two coordination modes, 1,2,3-trismonodentate and 1,2-bis-monodentate, connecting the Ho(III) ions to form a 2D bi-layered framework. Adjacent 2D frameworks are then parallel stacked in an AAA manner to construct its 3D supramolecular architecture. Hydrogen bonding interactions between the squarate ligands and coordinated water molecules in 1 and 2 both play important roles on the construction of their 3D supramolecular assembly. Compounds 1 and 2 both show remarkable ligand-enhanced photo-induced color-changing behavior, with their pink crystals immediately turning to yellow crystals under UV light illumination.

2004 ◽  
Vol 2 (4) ◽  
pp. 617-626 ◽  
Author(s):  
Mircho Georgiev ◽  
Tatiana Popova ◽  
Zhorro Nickolov ◽  
Nikolay Goutev ◽  
Georgi Georgiev ◽  
...  

AbstractThe hypothesis that the degree of hydration of poly(oxyethylene) (POE) in aqueous solution depends on the mole ratio of water molecules to ether oxygen atoms in the molecule has been verified by studying the isotropic Raman spectra in the O−H stretching region for four short-chain POEs (C 1EnC 1 withn=1−4). Excellent coincidence of the O−H stretching Raman band for all four POEs studied in the range of mole ratio H2O/Oether from 25 to 0.6 was observed, thus confirming the assumption stated above. A conclusion that all ether oxygen atoms in the POE molecule participate in hydrogen bonding with water molecules has been made.


2003 ◽  
Vol 58 (1) ◽  
pp. 52-58 ◽  
Author(s):  
Christian Näther ◽  
Jan Greve ◽  
Inke Jeß

Abstract Three new coordination polymers have been prepared by hydrothermal reaction of squaric acid, pyrazine and the metal halides FeCl2 · 4H2O, CoBr2 and NiBr2. In their crystal structures the metal atoms are coordinated by four water molecules and two pyrazine ligands within slightly distorted octahedra. The pyrazine ligands connect the metal atoms via μ-N,N’-coordination to linear chains which are connected via hydrogen bonding. The squarate dianions are not coordinated to the metal atoms and are located between the chains. The thermal behaviour of all compounds was investigated using TG-DTA-MS measurements. A complex behaviour for all compounds is found and the decomposition temperatures increase from Fe to Ni. From these investigations there are no hints for the occurrence of stoichiometric intermediate compounds.


1986 ◽  
Vol 41 (11) ◽  
pp. 1329-1332 ◽  
Author(s):  
Armin Weiss ◽  
Eugen Riegler ◽  
Christian Robl

Abstract The isotypic compounds (MC4O4·2 H2O)3·CH3COOH·H2O(M=Zn2+,Ni2+) crystallize in the cubic space group Pn3n. The 3-dimensional framework structure contains cavities, which may be filled with CH3COOH · H2O . The metal ions are coordinated almost octahedrally by two water molecules and four oxygen atoms of four C4O42- dianions. Thus the squarate dianions act as fourfold monodentate ligands. Strong hydrogen bonding between H2O and C4O42- has to be assumed.


2010 ◽  
Vol 66 (2) ◽  
pp. 213-221 ◽  
Author(s):  
Maxime A. Siegler ◽  
Jacob H. Prewitt ◽  
Steven P. Kelley ◽  
Sean Parkin ◽  
John P. Selegue ◽  
...  

Five structures of co-crystals grown from aqueous solutions equimolar in 15-crown-5 (or 15C5) and [M(H2O)6](NO3) n , M = Al3+, Cr3+ and Pd2+, are reported. The hydrogen-bonding patterns in all are similar: metal complexes including the fragment trans-H2O—M—OH2 alternate with 15C5 molecules, to which they are hydrogen bonded, to form stacks. A literature survey shows that this hydrogen-bonding pattern is very common. In each of the two polymorphs of the compound [Al(H2O)6](NO3)3·15C5·4H2O there are two independent cations; one forms hydrogen bonds directly to the 15C5 molecules adjacent in the stack, while the other cation is hydrogen-bonded to two water molecules that act as spacers in the stack. These stacks are then crosslinked by hydrogen bonds formed by the three nitrate counterions and the three lattice water molecules. The hydrogen-bonded stacks in [Cr(H2O)5(NO3)](NO3)2·1.5(15C5)·H2O are discrete rather than infinite; each unit contains two Cr3+ complex cations and three 15C5 molecules. These units are again crosslinked by the uncoordinated nitrate ions and a lattice water molecule. In [Pd(H2O)2(NO3)2]·15C5 the infinite stacks are electrically neutral and are not crosslinked. In [Pd(H2O)2(NO3)2]·2(15C5)·2H2O·2HNO3 a discrete, uncharged unit containing one Pd complex and two 15C5 molecules is `capped off' at either end by a lattice water molecule and an included nitric acid molecule. In all five structures the infinite stacks or discrete units form an array that is at least approximately hexagonal.


2000 ◽  
Vol 56 (1) ◽  
pp. 142-154 ◽  
Author(s):  
Feng Xue ◽  
Thomas C. W. Mak

New crystalline adducts of tetraalkylammonium terephthalate/trimesate with urea and water molecules result from hydrogen-bond directed assembly of complementary acceptors and donors, and the anionic host lattices are described using the graph-set notation to identify distinct hydrogen-bonding motifs and patterns. Tetra-n-butylammonium terephthalate–urea–water (1/6/2), C46H104N14O12 (1), triclinic, space group P1¯, a = 8.390 (2), b = 9.894 (2), c = 18.908 (3) Å, α = 105.06 (2), β = 94.91 (1), γ = 93.82 (2)°, Z = 1, is composed of hydrogen-bonded terephthalate–urea layers, which are intersected by urea layers to generate a three-dimensional network containing large channels for accommodation of the cations. Tetraethylammonium terephthalate–urea–water (1/1/5), C25H58N4O10 (2), triclinic, P1¯, a = 9.432 (1), b = 12.601 (1), c = 14.804 (1) Å, α = 79.98 (1), β = 79.20 (1), γ = 84.18 (1)°, Z = 2, has cations sandwiched between hydrogen-bonded anionic layers. Tetraethylammonium trimesate–urea–water (1/2/7.5), C35H86N7O15.5 (3), triclinic, P1¯, a = 13.250 (1), b = 14.034 (1), c = 15.260 (1) Å, α = 72.46 (1), β = 78.32 (1), γ = 66.95 (1)°, Z = 2, manifests a layer-type structure analogous to that of (2). Tetra-n-propylammonium hydrogen trimesate–urea–water (1/2/5), C35H78N6O13 (4), orthorhombic, Pna21, a = 16.467 (3), b = 33.109 (6), c = 8.344 (1) Å, Z = 4, features hydrogen trimesate helices in a three-dimensional host architecture containing nanoscale channels each filled by a double column of cations.


Author(s):  
N. Burger ◽  
H. Fuess

AbstractZinc formate cristallizes isomorphous to the formates of Mg, Sr, Cd, Mn and Ni in the monoclinic space groupThe structure has been refined including an isotropic extinction correction toThe octahedra of the two nonequivalent zinc atoms are slightly distorted. Zn(l) in (000) is surrounded by six oxygen atoms of the formate groups [distances Zn(l)–O = 2.071 Å–2.145 Å]; the octahedron of Zn(2) in (½½0) consists of the oxygen atoms of the two formate groups and two water molecules [distances Zn(2)–O = 2.053 Å–2.165 Å].The three-dimensional structure is stabilized by hydrogen bonding between formate groups and water molecules.


Crystals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 439 ◽  
Author(s):  
Verónica Jornet-Mollá ◽  
Carlos Giménez-Saiz ◽  
Francisco Romero

In this paper, we report on the synthesis, crystal structure, and photomagnetic properties of the spin-crossover salt of formula [Fe(bpp)2](C6H4NO2)2·4H2O (1·4H2O) (bpp = 2,6-bis(pyrazol-3-yl)pyridine; C6H4NO2− = nicotinate anion). This compound exhibits a 3D supramolecular architecture built from hydrogen bonds between iron(II) complexes, nicotinate anions, and water molecules. As synthesized, the hydrated material is low-spin and desolvation triggers a low-spin (LS) to high-spin (HS) transformation. Anhydrous phase 1 undergoes a partial spin crossover (T1/2= 281 K) and a LS to HS photomagnetic conversion with a T(LIESST) value of 56 K.


1972 ◽  
Vol 50 (21) ◽  
pp. 3515-3520 ◽  
Author(s):  
D. W. Davidson ◽  
S. K. Garg

HPF6 is said to form a hexahydrate of a unique clathrate structure in which [Formula: see text] ions occupy truncated-octahedral cages in a framework of hydrogen-bonded water molecules. N.m.r. studies show, however, that appreciable quantities of HF are incorporated in the lattice and that the composition is more properly [Formula: see text], a result supported by chemical analysis. H3O+ and HF appear to be distributed over the lattice sites previously assigned to water molecules so as to involve all H atoms in the hydrogen bonding. The 1H resonance line is narrowed by rapid proton diffusion down to 150 °K. The 19F line of encaged [Formula: see text] is narrowed by rotation above 75 °K and reaches the rigid-lattice shape only below 25 °K.


2002 ◽  
Vol 66 (6) ◽  
pp. 1063-1073 ◽  
Author(s):  
R. L. Frost ◽  
W. Martens ◽  
P. A. Williams ◽  
J. T. Kloprogge

Abstract The molecular structure of the three vivianite-structure, compositionally related phosphate minerals vivianite, baricite and bobierrite of formula M32+(PO4)2.8H2O where M is Fe or Mg, has been assessed using a combination of Raman and infrared (IR) spectroscopy. The Raman spectra of the hydroxyl-stretching region are complex with overlapping broad bands. Hydroxyl stretching vibrations are identified at 3460, 3281, 3104 and 3012 cm−1 for vivianite. The high wavenumber band is attributed to the presence of FeOH groups. This complexity is reflected in the water HOH-bending modes where a strong IR band centred around 1660 cm−1 is found. Such a band reflects the strong hydrogen bonding of the water molecules to the phosphate anions in adjacent layers. Spectra show three distinct OH-bending bands fromstrongly hydrogen-bonded, weakly hydrogen bonded water and non-hydrogen bonded water. The Raman phosphate PO-stretching region shows strong similarity between the three minerals. In the IR spectra, complexity exists with multiple antisymmetric stretching vibrations observed, due to the reduced tetrahedral symmetry. This loss of degeneracy is also reflected in the bending modes. Strong IR bands around 800 cm−1 are attributed to water librational modes. The spectra of the three minerals display similarities due to their compositions and crystal structures, but sufficient subtle differences exist for the spectra to be useful in distinguishing the species.


Author(s):  
Haruki Sugiyama

The crystal structures of two salt crystals of 2,2-bis(4-methylphenyl)hexafluoropropane (Bmphfp) with amines, namely, dipyridinium 4,4′-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl)dibenzoate 4,4′-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl)dibenzoic acid, 2C5H6N+·C17H8F6O4 2−·C17H10F6O4, (1), and a monohydrated ethylenediammonium salt ethane-1,2-diaminium 4,4′-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl)dibenzoate monohydrate, C2H10N2 2+·C17H8F6O4 2−·H2O, (2), are reported. Compounds 1 and 2 crystallize, respectively, in space group P21/c with Z′ = 2 and in space group Pbca with Z′ = 1. The crystals of compound 1 contain neutral and anionic Bmphfp molecules, and form a one-dimensional hydrogen-bonded chain motif. The crystals of compound 2 contain anionic Bmphfp molecules, which form a complex three-dimensional hydrogen-bonded network with the ethylenediamine and water molecules.


Sign in / Sign up

Export Citation Format

Share Document