scholarly journals Large, Rapid Swelling of High-cis Polydicyclopentadiene Aerogels Suitable for Solvent-Responsive Actuators

Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1033 ◽  
Author(s):  
Despoina Chriti ◽  
Grigorios Raptopoulos ◽  
Benjamin Brandenburg ◽  
Patrina Paraskevopoulou

High-cis polydicyclopentadiene (PDCPD) aerogels were synthesized using ring opening metathesis polymerization (ROMP) of dicyclopentadiene (DCPD) with a relatively air-stable ditungsten catalytic system, Na[W2(μ-Cl)3Cl4(THF)2]·(THF)3 (W2; (W3W)6+, a′2e′4), and norbornadiene (NBD)as a co-initiator. These aerogels are compared in terms of chemical structure and material properties with literature PDCPD aerogels obtained using well-established Ru-based alkylidenes as catalysts. The use of NBD as a co-initiator enhances the degree of crosslinking versus the more frequently used phenylacetylene (PA), yielding materials with a controlled molecular structure that would persist solvent swelling. Indeed, those PDCPD aerogels absorb selected organic solvents (e.g., chloroform, tetrahydrofuran) and swell rapidly, in some cases up to 4 times their original volume within 10 min, thus showing their potential for applications in chemical sensors and solvent-responsive actuators. The advantage of aerogels versus xerogels or dense polymers for these applications is their open porosity, which provides rapid access of the solvent to their interior, thus decreasing the diffusion distance inside the polymer itself, which in turn accelerates the response to the solvents of interest.

2020 ◽  
Vol 11 (27) ◽  
pp. 4492-4499
Author(s):  
Derek C. Church ◽  
Lauren Takiguchi ◽  
Jonathan K. Pokorski

Ring opening metathesis polymerization (ROMP) is widely considered an excellent living polymerization technique that proceeds rapidly in organic solvents. This work describes the optimization of ROMP under physiologically relevant conditions.


2018 ◽  
Author(s):  
Nicholas Marshall

A set of experiments in surface-initiated ring-opening metathesis polymerization, including end-functionalization of growing brushes and contact angle/cyclic voltammetry measurements. We report preparation and CV of two different conjugated polymer films, and several endgroup and sidechain functionalization experiments using cross-metathesis and active ester substitution.<br>


2011 ◽  
Author(s):  
Robert H. Lambeth ◽  
Joseph M. Dougherty ◽  
Joshua A. Orlicki ◽  
Adam M. Rawlett ◽  
Robert C. Hoffman ◽  
...  

2020 ◽  
Vol 53 (11) ◽  
pp. 4330-4337
Author(s):  
Santhosh Kumar Podiyanachari ◽  
Salvador Moncho ◽  
Edward N. Brothers ◽  
Saeed Al-Meer ◽  
Mohammed Al-Hashimi ◽  
...  

Author(s):  
David J. Hayne ◽  
Filip Stojcevski ◽  
Daniel B. Knorr ◽  
Ngon T. Tran ◽  
Luke C. Henderson

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 281
Author(s):  
Tomasz Jarosz ◽  
Przemyslaw Ledwon

Polypyrrole is a classical, well-known conjugated polymer that is produced from a simple heterocyclic system. Numerous pyrrole derivatives exhibit biological activity, and the repeat unit is a common building block present in the chemical structure of many polymeric materials, finding wide application, primarily in optoelectronics and sensing. In this work, we focus on the variety of copolymers and their material properties that can be produced electrochemically, even though all these systems are obtained from mixtures of the “simple” pyrrole monomer and its derivatives with different conjugated and non-conjugated species.


Sign in / Sign up

Export Citation Format

Share Document