scholarly journals Conformation of Pullulan in Aqueous Solution Studied by Small-Angle X-ray Scattering

Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1266 ◽  
Author(s):  
Jia Yang ◽  
Takahiro Sato

Small-angle X-ray scattering functions were measured for six pullulan samples with molecular weights ranging from 2.3 × 104 to 7.4 × 105 in 0.05 M aqueous NaCl at 25 °C and fitted by the perturbed wormlike chain model, comprising touched-bead sub-bodies, to obtain wormlike chain parameters. The parameter values determined were consistent with those determined from previously reported dilute solution properties of aqueous pullulan. Because radii of gyration of not only pullulan polymers, but also pullulan oligomers were consistently explained by the touched-bead wormlike chain model perturbed by the excluded volume effect, the pullulan chain takes a local conformation considerably different from the amylose chain, although both polysaccharides are flexible polymers with an approximately same characteristic ratio.

2009 ◽  
Vol 43 (1) ◽  
pp. 101-109 ◽  
Author(s):  
H. Fischer ◽  
M. de Oliveira Neto ◽  
H. B. Napolitano ◽  
I. Polikarpov ◽  
A. F. Craievich

This paper describes a new and simple method to determine the molecular weight of proteins in dilute solution, with an error smaller than ∼10%, by using the experimental data of a single small-angle X-ray scattering (SAXS) curve measured on a relative scale. This procedure does not require the measurement of SAXS intensity on an absolute scale and does not involve a comparison with another SAXS curve determined from a known standard protein. The proposed procedure can be applied to monodisperse systems of proteins in dilute solution, either in monomeric or multimeric state, and it has been successfully tested on SAXS data experimentally determined for proteins with known molecular weights. It is shown here that the molecular weights determined by this procedure deviate from the known values by less than 10% in each case and the average error for the test set of 21 proteins was 5.3%. Importantly, this method allows for an unambiguous determination of the multimeric state of proteins with known molecular weights.


2019 ◽  
Author(s):  
Christian Prehal ◽  
Aleksej Samojlov ◽  
Manfred Nachtnebel ◽  
Manfred Kriechbaum ◽  
Heinz Amenitsch ◽  
...  

<b>Here we use in situ small and wide angle X-ray scattering to elucidate unexpected mechanistic insights of the O2 reduction mechanism in Li-O2 batteries.<br></b>


2019 ◽  
Author(s):  
Hao Wu ◽  
Jeffrey Ting ◽  
Siqi Meng ◽  
Matthew Tirrell

We have directly observed the <i>in situ</i> self-assembly kinetics of polyelectrolyte complex (PEC) micelles by synchrotron time-resolved small-angle X-ray scattering, equipped with a stopped-flow device that provides millisecond temporal resolution. This work has elucidated one general kinetic pathway for the process of PEC micelle formation, which provides useful physical insights for increasing our fundamental understanding of complexation and self-assembly dynamics driven by electrostatic interactions that occur on ultrafast timescales.


1981 ◽  
Vol 46 (7) ◽  
pp. 1675-1681 ◽  
Author(s):  
Josef Baldrian ◽  
Božena N. Kolarz ◽  
Henrik Galina

Porosity variations induced by swelling agent exchange were studied in a styrene-divinylbenzene copolymer. Standard methods were used in the characterization of copolymer porosity in the dry state and the results were compared with related structural parameters derived from small angle X-ray scattering (SAXS) measurements as developed for the characterization of two-phase systems. The SAXS method was also used for porosity determination in swollen samples. The differences in the porosity of dry samples were found to be an effect of the drying process, while in the swollen state the sample swells and deswells isotropically.


2020 ◽  
Vol 91 (12) ◽  
pp. 123501
Author(s):  
M. Šmíd ◽  
C. Baehtz ◽  
A. Pelka ◽  
A. Laso García ◽  
S. Göde ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document