scholarly journals Comparative Study of Green and Synthetic Polymers for Enhanced Oil Recovery

Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2429
Author(s):  
Nasiru Salahu Muhammed ◽  
Md. Bashirul Haq ◽  
Dhafer Al-Shehri ◽  
Mohammad Mizanur Rahaman ◽  
Alireza Keshavarz ◽  
...  

Several publications by authors in the field of petrochemical engineering have examined the use of chemically enhanced oil recovery (CEOR) technology, with a specific interest in polymer flooding. Most observations thus far in this field have been based on the application of certain chemicals and/or physical properties within this technique regarding the production of 50–60% trapped (residual) oil in a reservoir. However, there is limited information within the literature about the combined effects of this process on whole properties (physical and chemical). Accordingly, in this work, we present a clear distinction between the use of xanthan gum (XG) and hydrolyzed polyacrylamide (HPAM) as a polymer flood, serving as a background for future studies. XG and HPAM have been chosen for this study because of their wide acceptance in relation to EOR processes. To this degree, the combined effect of a polymer’s rheological properties, retention, inaccessible pore volume (PV), permeability reduction, polymer mobility, the effects of salinity and temperature, and costs are all investigated in this study. Further, the generic screening and design criteria for a polymer flood with emphasis on XG and HPAM are explained. Finally, a comparative study on the conditions for laboratory (experimental), pilot-scale, and field-scale application is presented.

2021 ◽  
pp. 79-90
Author(s):  
Т. A. Pospelova

The article discusses ways to increase the oil recovery factor in already developed fields, special attention is paid to the methods of enhanced oil recovery. The comparative structure of oil production in Russia in the medium term is given. The experience of oil and gas companies in the application of enhanced oil recovery in the fields is analyzed and the dynamics of the growth in the use of various enhanced oil recovery in Russia is estimated. With an increase in the number of operations in the fields, the requirements for the selection of candidates inevitably increase, therefore, the work focuses on hydrodynamic modeling of physical and chemical modeling, highlights the features and disadvantages of existing simulators. The main dependences for adequate modeling during polymer flooding are given. The calculation with different concentration of polymer solution is presented, which significantly affects the water cut and further reduction of operating costs for the preparation of the produced fluid. The possibility of creating a specialized hydrodynamic simulator for low-volume chemical enhanced oil recovery is considered, since mainly simulators are applicable for chemical waterflooding and the impact is on the formation as a whole.


2021 ◽  
Vol 874 ◽  
pp. 45-49
Author(s):  
Ihsan Arifin ◽  
Grandprix Thomryes Marth Kadja ◽  
Cynthia L. Radiman

Enhanced Oil Recovery (EOR) is a promising technology for increasing crude oil production, especially from old wells. Polymer flooding is one of the techniques used in EOR in which the water-soluble polymer is added to increase the viscosity of the injected fluid. However, this technique has not been implemented in Indonesia due to the unavailability of locally-synthesized polymers. Therefore, this research aims to synthesize polyacrylamides and their partially-hydrolyzed derivatives and to study the possibility of their utilization for the EOR application. Various polymerization conditions using potassium persulfate (KPS) as initiators have been realized and the resulting polymers were characterized using FTIR spectroscopy and rheology measurement. It was found that higher monomer concentration resulted in higher viscosity-average molecular weight of polyacrylamide. Further study revealed that the hydrolysis of polyacrylamide by alkaline solution significantly increased the viscosity of 1000 ppm solution from 1.5 to 145.40 cP at room temperature, which is comparable to one of the commercial products. These results showed that the simple synthesis and hydrolysis method could be effectively used to produce water-soluble polymers for the EOR application.


2020 ◽  
Vol 143 (6) ◽  
Author(s):  
Pan-Sang Kang ◽  
Jong-Se Lim ◽  
Chun Huh

Abstract The viscosity of injection fluid is a critical parameter that should be considered for the design and evaluation of polymer flood, which is an effective and popular technique for enhanced oil recovery (EOR). It is known that the shear-thinning behavior of EOR polymer solutions is affected by temperature. In this study, temperature dependence (25–70 °C) of the viscosity of a partially hydrolyzed polyacrylamide solution, the most widely used EOR polymer for oil field applications, was measured under varying conditions of the polymer solution (polymer concentration: 500–3000 ppm, NaCl salinity: 1000–10,000 ppm). Under all conditions of the polymer solution, it was observed that the viscosity decreases with increasing temperature. The degree of temperature dependence, however, varies with the conditions of the polymer solution. Martin model and Lee correlations were used to estimate the dependence of the viscosity of the polymer solution on the polymer concentration and salinity. In this study, we proposed a new empirical model to better elucidate the temperature dependence of intrinsic viscosity. Analysis of the measured viscosities shows that the accuracy of the proposed temperature model is higher than that of the existing temperature model.


1981 ◽  
Vol 103 (4) ◽  
pp. 285-290 ◽  
Author(s):  
K. I. Kamath ◽  
S. J. Yan

The theory of enhanced oil recovery by surfactant flooding (micellarpolymer and “low-tension” floods) is based on three premises: that the chemical slug is 1) less mobile than the crude oil, 2) miscible with the reservoir fluids (oil and brine), and 3) stable over long periods of time (years) in the reservoir environment. We report here a rather simple process in which none of these expensive and exacting requirements have to be met. In this process, relatively small amounts of “EOR-active” substances present in certain petroleum-based sulfonates are found to recover 15–20 percent of the residual oil from waterflooded Berea sandstone cores. The chemicals are injected in the form of slugs of their aqueous solutions. If the chemical slugs are followed with similar slugs of additives such as partially hydrolyzed polyacrylamide, acrylamide monomer, urea, EDTA, or anions such as P2O7‴‴‴‴ and PO4‴‴‴, the oil recovery is increased 30–40 percent of the in-place residual oil. The concentrations of the “active” sulfonate and additive in their respective slugs appear to be of the order of 500 ppm or less. Extrapolation of the laboratory data to field conditions indicate that chemical requirements for the recovery of a barrel of tertiary oil are about 0.5–2 lb of sulfonate and a like amount of additive. The main features of the displacement process are: 1) Oil recovery is independent of oil viscosity in the tested range of 0.4–100 cps. 2) The process is essentially an immiscible displacement in which oil recovery depends on the amount of active chemical in the slug and not its concentration. 3) Tertiary oil is produced in the form of a clean “oil bank” and the buildup of a residual oil saturation at the producing end of linear cores occurs during the flood. From the data on hand, it is apparent that the oil recovery mechanism differs basically in character from the conventional Buckley-Leverett-type immiscible displacement. The low level concentrations of sulfonate and additive involved, and the independence of oil recovery with respect to oil viscosity suggest that the recovery mechanism is possibly actuated by certain specific functional groups in the structure of the EOR-active molecule or its anion, and of the additive. The results hold great potential for developing a simple and economical tertiary oil recovery process that can recover, very substantially, more oil (light as well as moderately viscous) than is now considered possible by conventional chemical floods.


Sign in / Sign up

Export Citation Format

Share Document