scholarly journals Rotational Particle Separation in Solutions: Micropolar Fluid Theory Approach

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1072
Author(s):  
Vladimir Shelukhin

We develop a new mathematical model for rotational sedimentation of particles for steady flows of a viscoplastic granular fluid in a concentric-cylinder Couette geometry when rotation of the Couette cell inner cylinder is prescribed. We treat the suspension as a micro-polar fluid. The model is validated by comparison with known data of measurement. Within the proposed theory, we prove that sedimentation occurs due to particles’ rotation and rotational diffusion.

2018 ◽  
Vol 21 (7) ◽  
pp. 1118-1133 ◽  
Author(s):  
Alvaro Vidal ◽  
Carlos Rodriguez ◽  
Phoevos Koukouvinis ◽  
Manolis Gavaises ◽  
Mark A McHugh

The Perturbed-Chain, Statistical Associating Fluid Theory equation of state is utilised to model the effect of pressure and temperature on the density, volatility and viscosity of four Diesel surrogates; these calculated properties are then compared to the properties of several Diesel fuels. Perturbed-Chain, Statistical Associating Fluid Theory calculations are performed using different sources for the pure component parameters. One source utilises literature values obtained from fitting vapour pressure and saturated liquid density data or from correlations based on these parameters. The second source utilises a group contribution method based on the chemical structure of each compound. Both modelling methods deliver similar estimations for surrogate density and volatility that are in close agreement with experimental results obtained at ambient pressure. Surrogate viscosity is calculated using the entropy scaling model with a new mixing rule for calculating mixture model parameters. The closest match of the surrogates to Diesel fuel properties provides mean deviations of 1.7% in density, 2.9% in volatility and 8.3% in viscosity. The Perturbed-Chain, Statistical Associating Fluid Theory results are compared to calculations using the Peng–Robinson equation of state; the greater performance of the Perturbed-Chain, Statistical Associating Fluid Theory approach for calculating fluid properties is demonstrated. Finally, an eight-component surrogate, with properties at high pressure and temperature predicted with the group contribution Perturbed-Chain, Statistical Associating Fluid Theory method, yields the best match for Diesel properties with a combined mean absolute deviation of 7.1% from experimental data found in the literature for conditions up to 373°K and 500 MPa. These results demonstrate the predictive capability of a state-of-the-art equation of state for Diesel fuels at extreme engine operating conditions.


2010 ◽  
Vol 26-28 ◽  
pp. 163-166
Author(s):  
Guo Hai Zhang ◽  
Guang Hui Zhou ◽  
Xue Qun Su

This paper presents a new kind of scheduling solution for multiple design tasks in networked developing environments. The main contributions of this study can be focused on three points: The first is to distinguish the concepts and contents of the task scheduling in the networked developing environments. The second is to construct a game-theory mathematical model to deal with this new multiple design tasks scheduling problem. In the presented mathematical model, the players, strategies and payoff are given separately. Therefore, obtaining the optimal scheduling results is determined by the Nash equilibrium (NE) point of this game. In order to find the NE point, a genetic algorithm (GA)-based solution algorithm to solve this mathematical model is proposed. Finally, a numerical case study is presented to demonstrate the feasibility of the methods.


2006 ◽  
Vol 304-305 ◽  
pp. 359-363 ◽  
Author(s):  
J.Y. Liu ◽  
Zhu Ji Jin ◽  
Dong Ming Guo ◽  
Ren Ke Kang

The lubrication properties of the slurry between the silicon wafer and the pad in chemical mechanical polishing (CMP) are critical to the planarity of the silicon wafer. Moreover, the suspending abrasives, which are contained in the slurry, have an extremely important influence on the lubrication properties of the slurry. In the CMP process of the large-sized silicon wafers, the influence of suspending abrasives on the slurry becomes more prominent. In order to explore the effects of suspending abrasives on the lubrication properties of the slurry under the light load conditions, a three-dimensional lubrication model based on the micro-polar fluid theory is developed. The effects of suspending abrasives on the fluid pressure acting on the wafer and the distribution of the slurry film between the silicon wafer and the pad are discussed.


2014 ◽  
Vol 80 (6) ◽  
pp. 825-832 ◽  
Author(s):  
R. Bharuthram ◽  
S. V. Singh ◽  
S. K. Maharaj ◽  
S. Moolla ◽  
I. J. Lazarus ◽  
...  

Using a fluid theory approach, this article provides a comparative study on the evolution of nonlinear waves in dusty plasmas, as well as other plasma environments, viz electron-ion, and electron-positron plasmas. Where applicable, relevance to satellite measurements is pointed out. A range of nonlinear waves from low frequency (ion acoustic and ion cyclotron waves), high frequency (electron acoustic and electron cyclotron waves) in electron-ion plasmas, ultra-low frequency (dust acoustic and dust cyclotron waves) in dusty plasmas and in electron-positron plasmas are discussed. Depending upon the plasma parameters, saw-tooth and bipolar structures are shown to evolve.


Sign in / Sign up

Export Citation Format

Share Document