scholarly journals Modelling of Diesel fuel properties through its surrogates using Perturbed-Chain, Statistical Associating Fluid Theory

2018 ◽  
Vol 21 (7) ◽  
pp. 1118-1133 ◽  
Author(s):  
Alvaro Vidal ◽  
Carlos Rodriguez ◽  
Phoevos Koukouvinis ◽  
Manolis Gavaises ◽  
Mark A McHugh

The Perturbed-Chain, Statistical Associating Fluid Theory equation of state is utilised to model the effect of pressure and temperature on the density, volatility and viscosity of four Diesel surrogates; these calculated properties are then compared to the properties of several Diesel fuels. Perturbed-Chain, Statistical Associating Fluid Theory calculations are performed using different sources for the pure component parameters. One source utilises literature values obtained from fitting vapour pressure and saturated liquid density data or from correlations based on these parameters. The second source utilises a group contribution method based on the chemical structure of each compound. Both modelling methods deliver similar estimations for surrogate density and volatility that are in close agreement with experimental results obtained at ambient pressure. Surrogate viscosity is calculated using the entropy scaling model with a new mixing rule for calculating mixture model parameters. The closest match of the surrogates to Diesel fuel properties provides mean deviations of 1.7% in density, 2.9% in volatility and 8.3% in viscosity. The Perturbed-Chain, Statistical Associating Fluid Theory results are compared to calculations using the Peng–Robinson equation of state; the greater performance of the Perturbed-Chain, Statistical Associating Fluid Theory approach for calculating fluid properties is demonstrated. Finally, an eight-component surrogate, with properties at high pressure and temperature predicted with the group contribution Perturbed-Chain, Statistical Associating Fluid Theory method, yields the best match for Diesel properties with a combined mean absolute deviation of 7.1% from experimental data found in the literature for conditions up to 373°K and 500 MPa. These results demonstrate the predictive capability of a state-of-the-art equation of state for Diesel fuels at extreme engine operating conditions.

Author(s):  
Alexander G. Sappok ◽  
Jeremy T. Llaniguez ◽  
Joseph Acar ◽  
Victor W. Wong

Derived from natural gas, coal, and even biomass Fischer-Tropsch (F-T) diesel fuels have a number of very desirable properties. The potential for emissions reduction with F-T diesel fuels in laboratory engine tests and on-road vehicle tests is well documented. While a number of chemical and physical characteristics of F-T fuels have been attributed to the observed reduction in emissions, the actual effects of both the fuel properties and in-cylinder combustion characteristics in modern diesel engines are still not well understood. In this study a 2002, six-cylinder, 5.9 liter, Cummins ISB 300 diesel engine, outfitted with an in-cylinder pressure transducer. was subjected to a subset of the Euro III 13-mode test cycle under steady-state operating conditions. Emissions and in-cylinder pressure measurements were conducted for neat F-T diesel, low sulfur diesel (LSD), ultra-low sulfur diesel (ULSD), and a blend of FT/LSD. In addition, a detailed chemical analysis of the fuels was carried out. The differences in the measured combustion characteristics and fuel properties were compared to the emissions variations between the fuels studied, and an explanation for the observed emissions behavior of the fuels was developed.


2014 ◽  
Vol 681 ◽  
pp. 7-10
Author(s):  
Hayat Qaisar ◽  
Li Yun Fan ◽  
En Zhe Song ◽  
Xiu Zhen Ma ◽  
Bing Qi Tian ◽  
...  

Diesel fuel pressure wave inside Combination Electronic Unit Pump (CEUP) pipeline has been investigated using a 1D viscous damped mathematical model considering the effect of four key fuel properties including density, viscosity, acoustic wave speed and bulk modulus. Wave equation (WE) based mathematical model has been developed in MATLAB using finite difference method. Mathematical model results at various operating conditions of diesel engine have been verified by comparing with those of AMESim numerical model of CEUP and quantified through Root Mean Square Errors (RMSE) and Index of Agreements (IA). Dynamic variations of these fuel properties during fuel injection cycles have also been incorporated in mathematical model by utilizing empirical formulas. Predicted results show that simulated results which consider fuel properties dynamic variations as a function of pressure are more coherent to AMESim numerical model results.


Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2285
Author(s):  
Min-Seop Kim ◽  
Ugochukwu Ejike Akpudo ◽  
Jang-Wook Hur

Diesel engine emissions contribute nearly 30% of greenhouse effects and diverse health and environmental problems. Amidst these problems, it is estimated that there will be a 75% increase in energy demand for transportation by 2040, of which diesel fuel constitutes a major source of energy for transportation. Being a major source of air pollution, efforts are currently being made to curb the pollution spread. The use of water-in-diesel (W/D)-emulsified fuels comes as a readily available (and cost-effective) option with other benefits including engine thermal efficiency, reduced costs, and NOx reduction; nonetheless, the inherent effects—power loss, component wear, corrosion, etc. still pose strong concerns. This study investigates the behavior and damage severity of a common rail (CR) diesel fuel injection system using exploratory and statistical methods under different W/D emulsion conditions and engine speeds. Results reveal that the effect of W/D emulsion fuels on engine operating conditions are reflected in the CR, which provides a reliable avenue for condition monitoring. Also, the effect of W/D emulsion on injection system components-piston, nozzle needle, and ball seat–are presented alongside related discussions.


Sign in / Sign up

Export Citation Format

Share Document