viscoelastic effect
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 5)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Vol 69 (4) ◽  
Author(s):  
Michele Ciavarella ◽  
Antonio Papangelo

AbstractMotivated by roughness-induced adhesion enhancement (toughening and strengthening) in low modulus materials, we study the detachment of a sphere from a substrate in the presence of both viscoelastic dissipation at the contact edge, and roughness in the form of a single axisymmetric waviness. We show that the roughness-induced enhancement found by Guduru and coworkers for the elastic case (i.e. at very small detachment speeds) tends to disappear with increasing speeds, where the viscoelastic effect dominates and the problem approaches that of a smooth sphere. This is in qualitative agreement with the original experiments of Guduru’s group with gelatin. The cross-over velocity is where the two separate effects are comparable. Viscoelasticity effectively damps roughness-induced elastic instabilities and makes their effects much less important. Graphical Abstract


Biology ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 831
Author(s):  
David Sánchez-Molina ◽  
Silvia García-Vilana ◽  
Jordi Llumà ◽  
Ignasi Galtés ◽  
Juan Velázquez-Ameijide ◽  
...  

The mechanical properties of the cerebral bridging veins (CBVs) were studied using advanced microtensile equipment. Detailed high-quality curves were obtained at different strain rates, showing a clearly nonlinear stress–strain response. In addition, the tissue of the CBVs exhibits stress relaxation and a preconditioning effect under cyclic loading, unequivocal indications of viscoelastic behavior. Interestingly, most previous literature that conducts uniaxial tensile tests had not found significant viscoelastic effects in CBVs, but the use of more sensitive tests allowed to observe the viscoelastic effects. For that reason, a careful mathematical analysis is presented, clarifying why in uniaxial tests with moderate strain rates, it is difficult to observe any viscoelastic effect. The analysis provides a theoretical explanation as to why many recent studies that investigated mechanical properties did not find a significant viscoelastic effect, even though in other circumstances, the CBV tissue would clearly exhibit viscoelastic behavior. Finally, this study provides reference values for the usual mechanical properties, as well as calculations of constitutive parameters for nonlinear elastic and viscoelastic models that would allow more accurate numerical simulation of CBVs in Finite Element-based computational models in future works.


Author(s):  
Changxue Xu ◽  
Zhengyi Zhang ◽  
Yong Huang ◽  
Heqi Xu

Abstract Viscoelastic polymer solutions have been extensively utilized in drop-wise manufacturing (such as inkjet printing) for a variety of biomedical applications. The pinch-off of viscoelastic jets is a key step towards generation of droplets in inkjet printing. This complex process is governed by interplay of four stresses including inertial stress, capillary stress, viscous stress, and elastic stress. Depending on polymer solution properties and process conditions, four types of pinch-off phenomenon were observed during inkjetting of viscoelastic alginate solutions. In this study, material properties of alginate solutions with different concentrations have been characterized, and three dimensionless numbers (Ohnesorge number Oh, Deborah number De and Weber number We) have been proposed to analyze different pinch-off behaviors. Phase diagram in terms of these three dimensionless numbers has been constructed to classify the regimes for different pinch-off types during inkjetting of viscoelastic alginate solutions. It is found that: 1) At low De and Oh, the viscoelastic effect is small. The capillary stress is mainly balanced by the inertial stress, resulting in front pinching. 2) At medium De and low Oh, the capillary stress is still mainly balanced by the inertial stress, but the elastic effect starts to show its effect by delaying the ligament thinning near the front-pinching location. With the increase of We, the pinch-off type may change from front pinching to hybrid pinching to exit pinching. 3) At low Oh and high De, the viscous and inertial effects are small. The capillary stress is mainly balanced by the elastic stress, resulting in exit pinching. 4) At high Oh and De, the viscoelastic effect is dominant. The capillary stress is mainly balanced by the viscous and elastic stresses. With the increase of We, middle pinching turns to be exit pinching due to the increase of the initial ligament diameter near the forming droplet.


2019 ◽  
Vol 58 (16) ◽  
pp. 4306
Author(s):  
Hongzhou Zhai ◽  
Qi Wu ◽  
Ke Xiong ◽  
Nobuhiro Yoshikawa ◽  
Tong Sun ◽  
...  

2018 ◽  
Vol 50 (5) ◽  
pp. 051414 ◽  
Author(s):  
Tomohiro Nimura ◽  
Takuya Kawata ◽  
Takahiro Tsukahara

2018 ◽  
Vol 69 ◽  
pp. 286-292 ◽  
Author(s):  
Qi Zhu ◽  
Christian Burtin ◽  
Christophe Binetruy
Keyword(s):  

2018 ◽  
Vol 85 (7) ◽  
Author(s):  
Guoyong Mao ◽  
Yuhai Xiang ◽  
Xiaoqiang Huang ◽  
Wei Hong ◽  
Tongqing Lu ◽  
...  

Viscoelasticity plays an important role in the instability and performance of soft transducers. Wrinkling, an instability phenomenon commonly observed on soft materials, has been studied extensively. In this paper, we theoretically investigate the viscoelastic effect on the wrinkle formation of a dielectric-elastomer (DE) balloon subjected to combined electromechanical loads. Results show that the critical voltage for the wrinkle formation of a DE balloon gradually decreases as the material undergoes viscoelastic relaxation and finally reaches a stable value. The wrinkles in the lateral direction always have critical voltages equal to or lower than those in the longitudinal direction. What is more, the nucleation sites of wrinkles always move from the apex to the rim of DE balloon with the viscoelastic relaxation of DE. It takes less time for the DE balloon with higher pressure to reach the stable state. Higher pressure also leads to the stable wrinkle nucleation site moving closer to the fixed edge of the DE balloon. An experiment is conducted to illustrate the effect of viscoelasticity on the wrinkle propagation of a DE balloon, and the results agree well with the model predictions. This study provides a guide in the wrinkling control of a DE balloon and may help the future design of DE transducers.


Author(s):  
K A Subhi ◽  
A Tudor ◽  
E K Hussein ◽  
H Wahad ◽  
G Chisiu
Keyword(s):  
Ex Vivo ◽  

2017 ◽  
Vol 95 (12) ◽  
pp. 1271-1277 ◽  
Author(s):  
Yue Wang ◽  
Wei-Hua Cai ◽  
Xin Zheng ◽  
Hong-Na Zhang ◽  
Feng-Chen Li

In this paper, to study the viscoelastic effect on isotropic turbulence without wall effects, a two oscillating grid turbulence is built to investigate this phenomenon using particle image velocimetry. In the experiments, the classical drag-reducing additives are chosen: polyacrylamide (PAM) and cetyltrimethyl ammonium chloride (CTAC), which have shown remarkable drag-reducing effect in wall-bounded turbulent flows. The results show that the existence of drag-reducing additives makes velocity field more anisotropic and reduces turbulent kinetic energy. We propose an intuitive and natural definition for a reduction rate of turbulent kinetic energy to show viscoelastic effect. It suggests that there exists a critical concentration for the reduction rate of turbulent kinetic energy in the CTAC solution case. Also, the small-scale vortex structures are inhibited, which suggests the drag-reducing mechanism in grid turbulence without wall effect.


Sign in / Sign up

Export Citation Format

Share Document