scholarly journals Cigarette Butt Waste as Material for Phase Inverted Membrane Fabrication Used for Oil/Water Emulsion Separation

Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1907
Author(s):  
Aris Doyan ◽  
Chew Lee Leong ◽  
Muhammad Roil Bilad ◽  
Kiki Adi Kurnia ◽  
Susilawati Susilawati ◽  
...  

The increasing rate of oil and gas production has contributed to a release of oil/water emulsion or mixtures to the environment, becoming a pressing issue. At the same time, pollution of the toxic cigarette butt has also become a growing concern. This study explored utilization of cigarette butt waste as a source of cellulose acetate-based (CA) polymer to develop a phase inverted membrane for treatment of oil/water emulsion and compare it with commercial polyvinylidene difluoride (PVDF) and polysulfone (PSF). Results show that the CA-based membrane from waste cigarette butt offers an eco-friendly material without compromising the separation efficiency, with a pore size range suitable for oil/water emulsion filtration with the rejection of >94.0%. The CA membrane poses good structural property similar to the established PVDF and PSF membranes with equally asymmetric morphology. It also poses hydrophilicity properties with a contact angle of 74.5°, lower than both PVDF and PSF membranes. The pore size of CA demonstrates that the CA is within the microfiltration range with a mean flow pore size of 0.17 µm. The developed CA membrane shows a promising oil/water emulsion permeability of 180 L m−2 h−1 bar−1 after five filtration cycles. However, it still suffers a high degree of irreversible fouling (>90.0%), suggesting potential future improvements in terms of membrane fouling management. Overall, this study demonstrates a sustainable approach to addressing oil/water emulsion pollution treated CA membrane from cigarette butt waste.

Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 427
Author(s):  
Normi Izati Mat Nawi ◽  
Nur Rifqah Sait ◽  
Muhammad Roil Bilad ◽  
Norazanita Shamsuddin ◽  
Juhana Jaafar ◽  
...  

Membrane-based technology is an attractive option for the treatment of oily wastewater because of its high oil removal efficiency, small footprint and operational simplicity. However, filtration performance is highly restricted by membrane fouling, especially when treating oil/water emulsion as a result of strong interaction between oil droplets and the hydrophobic property of the membrane. This study explores the fabrication of polyvinylidene fluoride (PVDF)-based membrane via the vapour induced phase separation (VIPS) method while incorporating polyvinyl pyrrolidone (PVP) as a hydrophilic additive to encounter membrane fouling issues and improve membrane filterability. The resulting membranes were characterized and tested for oil/water emulsion filtration to evaluate their hydraulic, rejection and anti-fouling properties. Results show that the changes in membrane morphology and structure from typical macrovoids with finger-like substructure to cellular structure and larger membrane pore size were observed by the prolonged exposure time from 0 to 30 min through the VIPS method. The enhanced clean water permeability is attributed to the addition of PVP–LiCl in the dope solution that enlarges the mean flow pore size from 0.210 ± 0.1 to 7.709 ± 3.5 µm. The best performing membrane was the VIPS membrane with an exposure time of 5 min (M-5), showing oil/water emulsion permeability of 187 Lm−2 h−1 bar−1 and oil rejection of 91.3% as well as an elevation of 84% of clean water permeability compared to pristine PVDF developed using a typical non-solvent induced phase separation (NIPS) method. Despite the relatively high total fouling, M-5 was able to maintain its high permeability by water flushing as a simple operation for membrane fouling control. The performance was achieved thanks to combination of the large mean flow pore size and hydrophilic property from residual PVP in the membarne matrix. Overall, the results demonstrate the potential of the optimum VIPS method in the presence of PVP and LiCl additives for oil/water emulsion treatment.


2021 ◽  
pp. 24-27
Author(s):  
F.G. Hasanov ◽  
◽  
S.B. Bayramov ◽  
R.M. Hasanzade ◽  
A.B. Garayev ◽  
...  

The construction of middle oil-gathering facility, in which technological processes are managed in a closed medium is necessary for environmental protection to control highly corrosive medium in oil and gas production. Associated gas separated from the fluid in initial separation unit within middle oil-gathering facility enters gas-gathering point with low pressure, and the liquid - into the pig of oil, water and sand, which should be constructed from iron concrete for cleaning from mechanical impurities sediments and salt as well. The liquid charge from the separation unit and pig of oil, water and sand is based upon the law of communicating vessels. To supply long-life for reservoirs, the inner and outer walls should be covered with a special coating and additionally, electrochemical protection should be provided as well.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 976
Author(s):  
Normi Izati Mat Nawi ◽  
Syasya Ong Amat ◽  
Muhammad Roil Bilad ◽  
Nik Abdul Hadi Md Nordin ◽  
Norazanita Shamsuddin ◽  
...  

Wastewater containing oil/water emulsion has a serious ecological impact and threatens human health. The impact worsens as its volume increases. Oil/water emulsion needs to be treated before it is discharged or reused again for processing. A membrane-based process is considered attractive in effectively treating oil/water emulsion, but progress has been dampened by the membrane fouling issue. The objective of this study is to develop polyvinylidene fluoride (PVDF) membranes customized for oil/water emulsion separation by incorporating assembly of tannic acid (TA) and polyvinylpyrrolidone (PVP) in the polymer matrix. The results show that the assembly of TA/PVP complexation was achieved as observed from the change in colour during the phase inversion and as also proven from the characterization analyses. Incorporation of the TA/PVP assembly leads to enhanced surface hydrophilicity by lowering the contact angle from 82° to 47°. In situ assembly of the TA/PVP complex also leads to enhanced clean water permeability by a factor of four as a result of enhanced mean flow pore size from 0.2 to 0.9 µm. Owing to enhanced surface chemistry and structural advantages, the optimum hydrophilic PVDF/TA/PVP membrane poses permeability of 540.18 L/(m2 h bar) for oil/water emulsion filtration, three times higher than the pristine PVDF membrane used as the reference.


Sign in / Sign up

Export Citation Format

Share Document