scholarly journals Effect of Friction Stir Welding Techniques and Parameters on Polymers Joint Efficiency—A Critical Review

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2056
Author(s):  
Miguel A. R. Pereira ◽  
Ana M. Amaro ◽  
Paulo N. B. Reis ◽  
Altino Loureiro

The objective of current work is to analyse the influence of different welding techniques and welding parameters on the morphology and mechanical strength of friction stir welds (FSW) in polymers, based on data collected in the literature. In the current work, only articles that provide data on the joint efficiency, or sufficient information to estimate it are considered. The process using conventional tool is presented and compared with new procedures developed for FSW of polymers, such as those using tools with heated stationary shoulder, preheating of the polymer or double-side passage of the tool. The influence of tool rotational speed (w), welding speed (v), tilt angle and geometry of the pin are discussed. This work focuses on the polymers most studied in the literature, polyethylene (PE) and polypropylene (PP). The use of external heating and tools with stationary shoulder proved to be of great importance in improving the surface finish, reducing defects, and increasing the mechanical strength of the welds. The increase in the w/v ratio increased the joint efficiency, especially when using conventional tools on PE. A trend was obtained for conventional FSW, but it was difficult to establish mathematical relationships, because of the variability of welding conditions.

2017 ◽  
Vol 31 (3) ◽  
pp. 291-310 ◽  
Author(s):  
Kabeer Raza ◽  
Muhammad Shamir ◽  
Muhammad Kashan Akhtar Qureshi ◽  
Abdul Shaafi Shaikh ◽  
Muhammad Zain-ul-abdein

Friction stir welding is a recently developed technique for joining low-melting metals and polymers. In the present work, friction stir welded joints of high-density polyethylene (HDPE) sheets were produced using a newly designed tool with a concave shoulder and a grooved conical pin. The joints were produced with and without the additions of ceramic particulates including silicon carbide (SiC), alumina, graphite, and silica. The effect of strain rate on the tensile properties of base material and plain welded joints was examined. In addition to tensile properties of composite joints, hardness profiles across the weld nugget were analyzed. It was observed that the increasing strain rate improved both the tensile strength and the ductility of the plain welded joints. The tool was able to yield a joint efficiency of around 84% in the plain welded samples. Although, in terms of joint efficiency, the composite joints were less efficient than the plain welded HDPE, SiC additions were found to yield better material properties relative to other reinforcements. Finally, it was concluded that an SiC–HDPE composite joint can be of practical importance in high strain rate applications, provided the optimum tool design and stir welding parameters are available.


2020 ◽  
Vol 118 (1) ◽  
pp. 108
Author(s):  
M.A. Vinayagamoorthi ◽  
M. Prince ◽  
S. Balasubramanian

The effects of 40 mm width bottom plates on the microstructural modifications and the mechanical properties of a 6 mm thick FSW AA6061-T6 joint have been investigated. The bottom plates are placed partially at the weld zone to absorb and dissipate heat during the welding process. An axial load of 5 to 7 kN, a rotational speed of 500 rpm, and a welding speed of 50 mm/min are employed as welding parameters. The size of the nugget zone (NZ) and heat-affected zone (HAZ) in the weld joints obtained from AISI 1040 steel bottom plate is more significant than that of weld joints obtained using copper bottom plate due to lower thermal conductivity of steel. Also, the weld joints obtained using copper bottom plate have fine grain microstructure due to the dynamic recrystallization. The friction stir welded joints obtained with copper bottom plate have exhibited higher ductility of 8.9% and higher tensile strength of 172 MPa as compared to the joints obtained using a steel bottom plate.


Sign in / Sign up

Export Citation Format

Share Document