scholarly journals The Influence of Pineapple Leaf Fiber Orientation and Volume Fraction on Methyl Methacrylate-Based Polymer Matrix for Prosthetic Socket Application

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3381
Author(s):  
Eric Worlawoe Gaba ◽  
Bernard O. Asimeng ◽  
Elsie Effah Kaufmann ◽  
E. Johan Foster ◽  
Elvis K. Tiburu

This work reports on the use of low-cost pineapple leaf fiber (PALF) as an alternative reinforcing material to the established, commonly used material for prosthetic socket fabrication which is carbon-fiber-reinforced composite (CFRC) due to the high strength and stiffness of carbon fiber. However, the low range of loads exerted on a typical prosthetic socket (PS) in practice suggests that the use of CFRC may not be appropriate because of the high material stiffness which can be detrimental to socket-limb load transfer. Additionally, the high cost of carbon fiber avails opportunities to look for an alternative material as a reinforcement for composite PS development. PALF/Methyl Methacrylate-based (MMA) composites with 0°, 45° and 90° fiber orientations were made with 5–50 v/v fiber volume fractions. The PALF/MMA composites were subjected to a three-point flexural test to determine the effect of fiber volume fraction and fiber orientation on the flexural properties of the composite. The results showed that 40% v/v PALF/MMA composite with 0° fiber orientation recorded the highest flexural strength (50 MPa) and stiffness (1692 MPa). Considering the average load range exerted on PS, the flexural performance of the novel composite characterized in this work could be suitable for socket-limb load transfer for PS fabrication.

2011 ◽  
Vol 391-392 ◽  
pp. 345-348 ◽  
Author(s):  
Xiao Yuan Pei ◽  
Jia Lu Li

The modal properties of carbon fiber woven fabric / epoxy resin composites with different fiber orientation angles were studied by using single input single output free vibration of cantilever beam hammering modal analysis method. With the same fiber volume fraction, the different fiber orientation of the laminated composite has an effect on parameters of vibration mode of composites. The experimental results show that with the fiber orientation increasing, the natural frequency of laminated composites becomes smaller and damping ratio becomes larger. The fiber orientation smaller, the peak value of natural frequency becomes higher and the attenuating degree of acceleration amplitude becomes slower.


2019 ◽  
Vol 801 ◽  
pp. 276-281
Author(s):  
Peng Hao Wang ◽  
Ronald Sterkenburg ◽  
Garam Kim ◽  
Yu Wei He

Composite materials continue to grow in popularity within the aerospace industry as the preferred material for manufacturing large airframe structures. However, the popularity of composite materials has also led to the increase in composite waste. As the popularity of composite materials continues to grow, the proper management and recycling of these composite waste materials becomes increasingly crucial to the sustainability of the environment. In order to investigate potential recycling techniques for composite waste, a team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students teamed up to investigate the characteristics of 3D printed recycled carbon fiber. A prototype 3D printed recycled carbon fiber part was used for the study. Through the use of microscopy and ImageJ image analyzing software, the researchers were able to determine the void content, fiber volume fraction, and fiber orientation of the prototype 3D printed recycled carbon fiber part and identified potential improvements to the 3D printing process in order to improve the 3D printed part’s characteristics.


2012 ◽  
Vol 583 ◽  
pp. 150-153
Author(s):  
Qian Liu ◽  
Xiao Yuan Pei ◽  
Jia Lu Li

The modal properties of carbon fiber woven fabric (with fiber orientation of 45°/-45°) / epoxy resin composites with different fiber volume fraction were studied by using single input and single output free vibration of cantilever beam hammering modal analysis method. The effect of different fiber volume fraction on the modal parameters of laminated composites was analyzed. The experimental results show that with the fiber volume fraction increasing, the natural frequency of laminated composites becomes larger and damping ratio becomes smaller. The fiber volume fraction smaller, the peak value of natural frequency becomes lower and the attenuating degree of acceleration amplitude becomes faster.


2021 ◽  
pp. 002199832110112
Author(s):  
Qing Yang Steve Wu ◽  
Nan Zhang ◽  
Weng Heng Liew ◽  
Vincent Lim ◽  
Xiping Ni ◽  
...  

Propagation of ultrasonic wave in Carbon Fiber Reinforced Polymer (CFRP) is greatly influenced by the material’s matrix, resins and fiber volume ratio. Laser ultrasonic broadband spectral technique has been demonstrated for porosity and fiber volume ratio extraction on unidirection aligned CFRP laminates. Porosity in the matrix materials can be calculated by longitudinal wave attenuation and accurate fiber volume ratio can be derived by combined velocity through the high strength carbon fiber and the matrix material with further consideration of porosity effects. The results have been benchmarked by pulse-echo ultrasonic tests, gas pycnometer and thermal gravimetric analysis (TGA). The potentials and advantages of the laser ultrasonic technique as a non-destructive evaluation method for CFRP carbon fiber volume fraction evaluation were demonstrated.


Fibers ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 67 ◽  
Author(s):  
Manish Roy ◽  
Corey Hollmann ◽  
Kay Wille

This paper studied the influence of fiber volume fraction ( V f ), fiber orientation, and type of reinforcement bar (rebar) on the uniaxial tensile behavior of rebar-reinforced strain-hardening ultra-high performance concrete (UHPC). It was observed that the tensile strength increased with the increase in V f . When V f was kept constant at 1%, rebar-reinforced UHPC with fibers aligned with the load direction registered the highest strength and that with fibers oriented perpendicular to the load direction recorded the lowest strength. The strength of the composite with random fibers laid in between. Moreover, the strength, as well as the ductility, increased when the normal strength grade 60 rebars embedded in UHPC were replaced with high strength grade 100 rebars with all other conditions remaining unchanged. In addition, this paper discusses the potential of sudden failure of rebar-reinforced strain hardening UHPC and it is suggested that the composite attains a minimum strain of 1% at the peak stress to enable the members to have sufficient ductility.


2018 ◽  
Vol 91 (7) ◽  
pp. 733-741
Author(s):  
Mahboubeh Moslemi ◽  
Mansour Razavi ◽  
Mohammad Zakeri ◽  
Mohammad Reza Rahimipour ◽  
Marcus Schreiner

Sign in / Sign up

Export Citation Format

Share Document