scholarly journals Ethyl Cellulose and Hydroxypropyl Methyl Cellulose Blended Methotrexate-Loaded Transdermal Patches: In Vitro and Ex Vivo

Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3455
Author(s):  
Muhammad Shahid Latif ◽  
Abul Kalam Azad ◽  
Asif Nawaz ◽  
Sheikh Abdur Rashid ◽  
Md. Habibur Rahman ◽  
...  

Transdermal drug delivery systems (TDDSs) have become innovative, fascinating drug delivery methods intended for skin application to achieve systemic effects. TDDSs overcome the drawbacks associated with oral and parenteral routes of drug administration. The current investigation aimed to design, evaluate and optimize methotrexate (MTX)-loaded transdermal-type patches having ethyl cellulose (EC) and hydroxypropyl methyl cellulose (HPMC) at different concentrations for the local management of psoriasis. In vitro release and ex vivo permeation studies were carried out for the formulated patches. Various formulations (F1–F9) were developed using different concentrations of HPMC and EC. The F1 formulation having a 1:1 polymer concentration ratio served as the control formulation. ATR–FTIR analysis was performed to study drug–polymer interactions, and it was found that the drug and polymers were compatible with each other. The formulated patches were further investigated for their physicochemical parameters, in vitro release and ex vivo diffusion characteristics. Different parameters, such as surface pH, physical appearance, thickness, weight uniformity, percent moisture absorption, percent moisture loss, folding endurance, skin irritation, stability and drug content uniformity, were studied. From the hydrophilic mixture, it was observed that viscosity has a direct influence on drug release. Among all formulated patches, the F5 formulation exhibited 82.71% drug release in a sustained-release fashion and followed an anomalous non-Fickian diffusion. The permeation data of the F5 formulation exhibited about a 36.55% cumulative amount of percent drug permeated. The skin showed high retention for the F5 formulation (15.1%). The stability study indicated that all prepared formulations had very good stability for a period of 180 days. Therefore, it was concluded from the present study that methotrexate-loaded transdermal patches with EC and HPMC as polymers at different concentrations suit TDDSs ideally and improve patient compliance for the local management of psoriasis.

Author(s):  
Sakthikumar T ◽  
Rajendran N N ◽  
Natarajan R

The present study was aimed to develop an extended release tablet of metoprolol Succinate for the treatment of hypertension.  Four extended release formulations F1-F4 were developed using varying proportions of hydroxylpropyl-methylcellulose K100M, sodium carboxy methyl cellulose and Eudragit L30 D55 by wet granulation. Five extended release formulations F5-F9 containing HPMC K100M and HPMC 5 cps in varying concentration were developed by direct compression. The physicochemical and in vitro release characteristics of all the formulations were investigated and compared. Two formulations, F7 and F8 have shown not more 25% drug release  in 1st h, 20%-40% drug release at 4th hour, 40%-60% drug release at 8th hour and not less than 80% at 20th hour and the release pattern conform with USP specification for 24 hours extended release formulation. It can be conclusively stated that optimum concentration of HPMC K100M (58%-65%) by direct compression method can yield an extended release of metoprolol succinate for 24 hours.


2021 ◽  
Vol 14 ◽  
Author(s):  
Sarbjot Kaur ◽  
Ujjwal Nautiyal ◽  
Pooja A. Chawla ◽  
Viney Chawla

Background: Background: Olanzapine belongs to a new class of dual spectrum antipsychotic agents. It is known to show promise in managing both the positive and negative symptoms of schizophrenia. Drug delivery systems based on nanostructured lipid carriers (NLC) are expected to provide rapid nose-to-brain transport of this drug and improved distribution into and within the brain. Objective: The present study deals with the preparation and evaluation of olanzapine loaded NLC via the intranasal route for schizophrenia. Methods: Olanzapine-NLC were formulated through the solvent injection method using isopropyl alcohol as the solvent, stearic acid as solid lipid, and oleic acid as liquid lipid, chitosan as a coating agent, and Poloxamer 407 as a surfactant. NLC were characterized for particle size, polydispersity index, entrapment efficiency, pH, viscosity, X-ray diffraction studies, in-vitro mucoadhesion study, in- vitro release and ex-vivo permeation studies. The shape and surface morphology of the prepared NLC was determined through transmission electron microscopy. To detect the interaction of the drug with carriers, compatibility studies were also carried out. Results: Average size and polydispersity index of developed formulation S6 was 227.0±6.3 nm and 0.460 respectively. The encapsulation efficiency of formulation S6 was found to be 87.25 %. The pH, viscosity, in-vitro mucoadhesion study, and in- vitro release of optimized olanzapine loaded NLC were recorded as 5.7 ± 0.05, 78 centipoise, 15±2 min, and 91.96 % respectively. In ex-vivo permeation studies, the percent drug permeated after 210 min was found to be 84.03%. Conclusion: These results reveal potential application of novel olanzapine-NLC in intranasal drug delivery system for treatment of schizophrenia.


Author(s):  
SANJAY KUMAR GUPTA ◽  
AFRAH HUNEZA ◽  
SRADHANJALI PATRA

Objective: The objective of the present study was to develop “once daily” extended release tablets of tramadol (100 mg) by wet granulation using hydrophilic polymer like hydroxy propyl methyl cellulose K100M,K15M and polyethylene oxide (PEO). Methods: The tramadol matrix tablets were prepared by using different polymers like hydroxy propyl methyl cellulose (HPMC K15M and K100M), polyethylene oxide (PEO) as the nontoxic and easily available suitable matrix system. The extended release tablets of tramadol (400 mg) were prepared wet granulation technique. Different pre compression and post compression were performed. In vitro dissolution tests were performed and percentage drug release was calculated. The fourier-transform infrared spectroscopy (FTIR) studies conducted on pure drug tramadol and the optimize formulation (T6). Different release models like zero order, first order, higuchi and Korsemeyer-Peppas were applied to in vitro drug release data in order to evaluate the drug release mechanisms and kinetics. Results: Pre compression and post compression parameters satisfied with pharmacopeia specifications. The In vitro release studies were performed using USP type II apparatus showed that optimized formulation T6 consisting of polyethylene oxide (PEO) with 25 mg of the polymer was found to extended release of tramadol over a period of 24h. The optimized formulation T6 followed the zero order kinetics as correlation coefficient (r2) values are higher than that of first-order release kinetics. In order to understand the complex mechanism of drug release from the optimized formulation T6 matrix system, the in vitro release rate were fitted to Korsemeyer-Peppas model and the release exponent value (n) obtained was 0.82105 exhibited anomalous (non fickian) diffusion mechanism. Conclusion: The present study shows that polyethylene oxide was found to play a great role in controlling release of tramadol from the matrix system. Accordingly it can be concluded that the formulation is robust in the performance is less likely to be affected by the various factors studied.


Author(s):  
AMRIN SHAIKH ◽  
PRASHANT BHIDE ◽  
REESHWA NACHINOLKAR

Objective: The aim of the present investigation was to design gels for the topical delivery of celecoxib and evaluate with an aim to increase its penetration through the skin and thereby its flux. Method: The solubility of celecoxib is shown to be increased by preparing solid dispersions (SDs) using carriers such as mannitol, polyvinylpyrrolidone (PVP-K30), polyethylene glycol (PEG) 6000 and urea by solvent evaporation, fusion, and coevaporation methods. In vitro release profile of all SD was comparatively evaluated and studied against the pure drug. The prepared SD was subjected for percent practical yield, drug content, infrared spectroscopy, differential scanning calorimetry analysis, X-ray diffraction studies, and scanning electron microscopy (SEM) imaging. The celecoxib gel was prepared using hydroxypropyl methyl cellulose (HPMC) and Carbopol containing a permeation enhancer dimethyl sulfoxide (DMSO) at different proportions and evaluated for drug content, pH, viscosity, spreadability, extrudability, stability, and in vitro drug release. Results: Faster dissolution rate was exhibited by SD containing 1:5 ratio of celecoxib: PVP K-30 prepared by coevaporation method. In vitro drug release of celecoxib, gels revealed that formulation with HPMC has higher drug release as compared to Carbopol. Conclusion: The increase in dissolution rate for SD is observed in the following order of PVP K-30>urea>mannitol>PEG 6000. The CPD5 gel containing a SD CP5 and 20% DMSO showed the best in vitro release 74.13% at the end of 6 h.


2017 ◽  
Vol 15 (2) ◽  
pp. 177-186
Author(s):  
Abhijeet Ojha ◽  
NV Satheesh Madhav

The aim of our research work was to isolate a biomaterial from Colocasia. esculenta and prepare phenytoin loaded mucoadhesive biofilms using this biomaterial. The biomaterial was isolated from C. esculenta tubers by an economical process. The isolated biomaterial was subjected to various physical evaluation, chemical tests as well as spectral analysis. The drug-biomaterial interaction study was performed to see if there was any interaction of biomaterial with phenytoin. Phenytoin loaded biofilms were prepared using biomaterial, flexicizer and other co- processing agents. The prepared biofilms were evaluated for physical appearance, weight, thickness, folding endurance, swelling index, surface pH, tensile strength, percent elongation, percent moisture uptake, percent moisture loss, vapor transmission rate and content uniformity. The mucoadhesivity of biofilms was investigated using rotating basket method. The in-vitro drug release study of biofilms was performed on static MS diffusion apparatus. The stability studies of biofilms were carried out at different conditions of temperature and relative humidity. The results were compared with the standard hydroxy propyl methyl cellulose (HPMC) and sodium carboxymethyl cellulose (Sodium CMC) films. The experimental results revealed that the phenytoin loaded biofilms of C. esculenta possessed excellent mucoadhesivity, sufficient stability as well as appreciable release characteristics. The best biofilm formulation was PK6 with a cumulative drug release of 95.35 % over 36 hours. Hence, C. esculenta biomaterial can serve as a potential film forming agent for transmucosal drug delivery systems.Dhaka Univ. J. Pharm. Sci. 15(2): 177-186, 2016 (December)


2021 ◽  
Vol 7 (2) ◽  
pp. 672-675
Author(s):  
Katharina Wulf ◽  
Stefan Raggl ◽  
Thomas Eickner ◽  
Gerrit Paasche ◽  
Niels Grabow

Abstract Sterilization processes ensure sterility of drug delivery systems, but may negatively affect the properties of biomaterials and incorporated drugs by changing their physical, chemical, mechanical properties and drug release behaviour. Therefore, it is important to investigate their influence. In this study, the influence of ethylene oxide (EtO) sterilization on the drug loading and release behaviour of incorporated Diclofenac (DCF) in a Poly-L-lactide (PLLA) coating and Dexamethasone (DMS) in the silicone carrier is presented. Silicone samples containing DMS were coated with PLLA containing DCF varying in layer thickness (5, 10, and 20 μm). Half of the samples underwent EtO sterilization, the other half was not sterilized. All un-/sterilized sample surfaces were in view of the morphology and hydrophilicity examined. Furthermore, in vitro release studies of DMS and DCF were conducted. The sterilized sample surfaces showed no morphological and hydrophilicity changes. The DCF and DMS loadings were similar for the sterile and untreated samples. This also applied to the in vitro DMS release profiles apart from the end of the studies where slight differences were evident. The results indicate that both drugs loaded in the polymer coating and the silicone were not impaired by the sterilization process. Thus, EtO sterilization appears suitable for DMS containing silicone and DCF incorporated PLLA coatings as a dual drug delivery system.


Author(s):  
Surendra Singh Saurabh ◽  
Roshan Issarani ◽  
Nagori Bp

Objective: In the present dissertation work, the aim was to prepare self-emulsifying drug delivery systems (SEDDS) of etoricoxib to improve its solubility with a view to enhance its oral bioavailability.Methods: The prepared SEDDS was the concentrate of drug, oil, surfactants, and cosurfactant. The formulation was evaluated for various tests such as solubility, globule size, thermodynamic stability study, pH determination, ease of dispersibility, uniformity index, drug content, in-vitro release study, and in-vitro permeation study.Results: The optimized formulation F6 showed drug release (79.21±2.73%), droplet size (0.546 μm). In vitro drug release of the F6 was highly significant (p<0.05) as compared to the plain drug.Conclusion: All formulations of etoricoxib SEDDS were showed faster dissolution than plain drug (p<0.05), mean bioavailability of etoricoxib increase in respect to the plain drug. The F6 can be further used for the preparation of various solid SEDDS formulations.


2020 ◽  
Vol 3 (1) ◽  
pp. 01-08
Author(s):  
Chinthakindi Shravya

The main aim of this investigation is to design and develop matrix type transdermal patches of Propranolol Hydrochloride which is an anti-hypertensive drug. These matrix type transdermal patches were prepared by “Solvent Casting Technique” using drug, HPMC E15 and Eudragit L 100 in the ratio of 1:6, 1:6.5, 1:7, 1:7.5, 1:8, 1:8.5, 1:9, 1:9.5. All formulations carried 20%v/w of PEG-600 as plasticizer. The prepared patches were characterized for various physicochemical parameters like weight, thickness, folding endurance, drug content, percent moisture content, percent moisture absorption, in vitro drug release and ex vivo permeation. Among this 1:9 ratio was found to be an Optimized formulation and patches were prepared by using permeation enhancers (lemon grass oil, Eucalyptus oil, and clove oil). The cumulative amount of drug release in 12hrs for F7 formulation showed maximum and used for that formulation skin permeation on Goat abdominal skin. FTIR studies show no interaction between drug, polymer and other excipients. The drug permeation kinetics followed “First order” and “zero order” profile with diffusion mechanism.


Author(s):  
Sudarshan Singh ◽  
S S Shyale ◽  
A Jadhav

The present investigation is concerned with formulation and evaluation of buccoadhesive tablets containing antihypertensive drug, Losartan Potassium to avoid the first pass effect and to improve its bioavailability with reduction in dosing frequency and dose related side effects. The tablets were prepared by wet granulation method. Nine formulations were developed with varying concentrations of polymers like hydroxypropylmethyl cellulose K100 and Guar gum. The tablets were tested for hardness, friability, weight variation, content uniformity, surface pH, swelling index, ex vivo mucoadhesive strength, in vitro drug dissolution study and ex-vivo permeation study. FTIR and DSC studies showed no evidence on interactions between drug and excipients. The in vitro release of Losartan Potassium was performed under sink conditions. The mucoadhesive strength of formulation F9 was found to be 0.14307 N. The swelling index of formulation F9 was found to be 87%. The formulation F9, containing 25 mg of losartan potassium exhibited 6 h sustained drug release of 96% with desired therapeutic concentration. The in vitro release kinetics studies revealed that all formulations fits well with zero order kinetics followed by Korsemeyer-Peppas model and the mechanism of drug release is Non-Fickian diffusion. Based on the results of ex vivo mucoadhesive strength and swelling index studies formulation F9 was selected as optimized formulation and subjected for stability study. Short-term stability studies on the promising formulation indicated that there are no significant changes in drug content and in vitro dissolution characteristics.  


Sign in / Sign up

Export Citation Format

Share Document