scholarly journals Advanced Carbon Materials Derived from Polybenzoxazines: A Review

Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3775
Author(s):  
Cecilia Shaer ◽  
Leah Oppenheimer ◽  
Alice Lin ◽  
Hatsuo Ishida

This comprehensive review article summarizes the key properties and applications of advanced carbonaceous materials obtained from polybenzoxazines. Identification of several thermal degradation products that arose during carbonization allowed for several different mechanisms (both competitive ones and independent ones) of carbonization, while also confirming the thermal stability of benzoxazines. Electrochemical properties of polybenzoxazine-derived carbon materials were also examined, noting particularly high pseudocapacitance and charge stability that would make benzoxazines suitable as electrodes. Carbon materials from benzoxazines are also highly versatile and can be synthesized and prepared in a number of ways including as films, foams, nanofibers, nanospheres, and aerogels/xerogels, some of which provide unique properties. One example of the special properties is that materials can be porous not only as aerogels and xerogels, but as nanofibers with highly tailorable porosity, controlled through various preparation techniques including, but not limited to, the use of surfactants and silica nanoparticles. In addition to the high and tailorable porosity, benzoxazines have several properties that make them good for numerous applications of the carbonized forms, including electrodes, batteries, gas adsorbents, catalysts, shielding materials, and intumescent coatings, among others. Extreme thermal and electrical stability also allows benzoxazines to be used in harsher conditions, such as in aerospace applications.

2008 ◽  
Vol 59 (9) ◽  
Author(s):  
Daniel I. Hadaruga ◽  
Nicoleta G. Hadaruga ◽  
Anca Hermenean ◽  
Adrian Rivis ◽  
Vasile Paslaru ◽  
...  

This paper presents the thermal stability of the oleic acid encapsulated in a- and b - cyclodextrin. The complexation of the oleic acid was achieved by the ethanol-water solution method and the nanoparticles were analyzed by DSC. The free oleic acid and the encapsulated one were subjected to the thermal degradation in the range of 50-150�C and the degradation products were identified and quantified by GC-MS analysis of the fatty acid esters obtained by deriving with methanol/boron trifluoride, both for free compounds and for the encapsulated ones. The oleic acid complexes were very stable in this range of temperature.


2002 ◽  
Vol 4 (5) ◽  
pp. 717-721 ◽  
Author(s):  
Maj-Len Henriks-Eckerman ◽  
Jarmo Välimaa ◽  
Christina Rosenberg ◽  
Kimmo Peltonen ◽  
Kerstin Engström

2022 ◽  
Vol 4 (1) ◽  
pp. 013-018
Author(s):  
Mohini Chandrashekhar Upadhye ◽  
Mohini Chetan Kuchekar ◽  
Rohini Revansiddhappa Pujari ◽  
Nutan Uttam Sable

Biopolymers are compounds prepared by using various living organisms, including plants. These are composed of repeated units of the same or similar structure (monomers) linked together. Rubber, starch, cellulose, proteins and DNA, RNA, chitin, and peptides are some of the examples of natural biopolymers. Biopolymers are a diverse and remarkably versatile class of materials that are either produced by biological systems or synthesize from biological sources. Biopolymers are used in pharmaceutical industry and also in food industry.Naturally derived polymers are also used for conditioning benefits in hair and skin care. Biopolymers have various applications in medicine, food, packaging, and petroleum industries. This review article is focused on various aspects of biopolymers with a special emphasis on role of biopolymers in green nanotechnology and agriculture.


Sign in / Sign up

Export Citation Format

Share Document