scholarly journals Preparation of Esterified Bacterial Cellulose for Improved Mechanical Properties and the Microstructure of Isotactic Polypropylene/Bacterial Cellulose Composites

Polymers ◽  
2016 ◽  
Vol 8 (4) ◽  
pp. 129 ◽  
Author(s):  
Bo Wang ◽  
Dan Yang ◽  
Hai-rong Zhang ◽  
Chao Huang ◽  
Lian Xiong ◽  
...  
RSC Advances ◽  
2017 ◽  
Vol 7 (67) ◽  
pp. 42113-42122 ◽  
Author(s):  
Bo Wang ◽  
Hai-Rong Zhang ◽  
Chao Huang ◽  
Lian Xiong ◽  
Jun Luo ◽  
...  

Bacterial cellulose (BC) has great potential to be used as a new filler in reinforced isotactic polypropylene (iPP) due to its characteristics of high crystallinity, biodegradability and efficient mechanical properties.


Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 508 ◽  
Author(s):  
Bo Wang ◽  
Fu-hua Lin ◽  
Xiang-yang Li ◽  
Xu-ran Ji ◽  
Si-xiao Liu ◽  
...  

Isotactic polypropylene (iPP) is a commonly used thermoplastic polymer with many excellent properties. But high brittleness, especially at low temperatures, limits the use of iPP. The presence of transcrystallization of iPP makes it possible for fiber-reinforced iPP composites with higher strength. Bacterial cellulose (BC) is a kind of cellulose with great potential to be used as a new filler to reinforce iPP due to its high crystallinity, biodegradability and efficient mechanical properties. In this study, the iPP/BC hamburger composite was prepared by a simple hot press and maleic anhydride grafted polypropylene (MAPP) was used to improve the interface compatibility of iPP and BC. The polarizing microscope (POM) photograph shows that BC successfully induces the transcrystallization of iPP. The differential Scanning Calorimeter (DSC) date proves that the addition of BC could improve the thermal properties and crystallization rate of the composite. Especially, this change is more obvious of the iPP/MAPP/BC. The mechanical properties of the iPP/BC composites were greatly increased. This DSC date is higher than BC; we used BC particles to enhance the iPP in our previous research. The scanning Electron Microscope (SEM) analysis intuitively shows that the interface of the iPP/MAPP/BC is more smooth and flat than the iPP/BC. The fourier Transform infrared spectroscopy (FT-IR) analysis of the iPP/BC hamburger composites was shown that a new C=O group vibration appeared at 1743 cm−1, which indicated that the hydrogen bond structure of BC molecules was weakened and some hydroxyl groups were substituted after modification which can increase the lipophilicity of BC. These results indicated that the BC fiber can easily induce the transcrystallization of iPP, which has excellent mechanical properties. Moreover, the addition of MAPP contributes greatly to the interface compatibility of iPP and BC.


2017 ◽  
Vol 174 ◽  
pp. 970-979 ◽  
Author(s):  
Monika Szymańska-Chargot ◽  
Monika Chylińska ◽  
Justyna Cybulska ◽  
Arkadiusz Kozioł ◽  
Piotr M. Pieczywek ◽  
...  

2009 ◽  
Vol 2009.45 (0) ◽  
pp. 95-96
Author(s):  
Yoshihito OZAWA ◽  
Tokio KIKUCHI ◽  
Masayoshi WATANABE ◽  
Koichi KOICHI ◽  
Atsushi TAKITA

Polymer Korea ◽  
2017 ◽  
Vol 41 (3) ◽  
pp. 460-464 ◽  
Author(s):  
Bo Wang ◽  
Hai-Rong Zhang ◽  
Chao Huang ◽  
Lian Xiong ◽  
Jun Luo ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1263
Author(s):  
David Stuart Thompson ◽  
Azharul Islam

The extensibility of synthetic polymers is routinely modulated by the addition of lower molecular weight spacing molecules known as plasticizers, and there is some evidence that water may have similar effects on plant cell walls. Furthermore, it appears that changes in wall hydration could affect wall behavior to a degree that seems likely to have physiological consequences at water potentials that many plants would experience under field conditions. Osmotica large enough to be excluded from plant cell walls and bacterial cellulose composites with other cell wall polysaccharides were used to alter their water content and to demonstrate that the relationship between water potential and degree of hydration of these materials is affected by their composition. Additionally, it was found that expansins facilitate rehydration of bacterial cellulose and cellulose composites and cause swelling of plant cell wall fragments in suspension and that these responses are also affected by polysaccharide composition. Given these observations, it seems probable that plant environmental responses include measures to regulate cell wall water content or mitigate the consequences of changes in wall hydration and that it may be possible to exploit such mechanisms to improve crop resilience.


2012 ◽  
Vol 3 (1) ◽  
pp. 13-26
Author(s):  
Myrtha Karina ◽  
Lucia Indrarti ◽  
Rike Yudianti ◽  
Indriyati

The effect of castor oil on the physical and mechanical properties of bacterial cellulose is described. Bacterial cellulose (BC) was impregnated with 0.5–2% (w/v) castor oil (CO) in acetone–water, providing BCCO films. Scanning electron micrographs revealed that the castor oil penetrated the pores of the bacterial cellulose, resulting in a smoother morphology and enhanced hydrophilicity. Castor oil caused a slight change in crystallinity indices and resulted in reduced tensile strength and Young's modulus but increased elongation at break. A significant reduction in tensile strength and Young's modulus was achieved in BCCO films with 2% castor oil, and there was an improvement in elongation at break and hydrophilicity. Impregnation with castor oil, a biodegradable and safe plasticiser, resulted in less rigid and more ductile composites.


Sign in / Sign up

Export Citation Format

Share Document