scholarly journals Production Process Optimization of Metal Mines Considering Economic Benefit and Resource Efficiency Using an NSGA-II Model

Processes ◽  
2018 ◽  
Vol 6 (11) ◽  
pp. 228 ◽  
Author(s):  
Xunhong Wang ◽  
Xiaowei Gu ◽  
Zaobao Liu ◽  
Qing Wang ◽  
Xiaochuan Xu ◽  
...  

The optimization of the production process of metal mines has been traditionally driven only by economic benefits while ignoring resource efficiency. However, it has become increasingly aware of the importance of resource efficiency since mineral resource reserves continue to decrease while the demand continues to grow. To better utilize the mineral resources for sustainable development, this paper proposes a multi-objective optimization model of the production process of metal mines considering both economic benefits and resource efficiency. Specifically, the goals of the proposed model are to maximize the profit and resource utilization rate. Then, the fast and elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II) is used to optimize the multi-objective optimization model. The proposed model has been applied to the optimization of the production process of a stage in the Huogeqi Copper Mine. The optimization results provide a set of Pareto-optimal solutions that can meet varying needs of decision makers. Moreover, compared with those of the current production indicators, the profit and resource utilization rate of some points in the optimization results can increase respectively by 2.99% and 2.64%. Additionally, the effects of the decision variables (geological cut-off grade, minimum industrial grade and loss ratio) on objective functions (profit and resource utilization rate) were discussed using variance analysis. The sensitivities of the Pareto-optimal solutions to the unit copper concentrate price were studied. The results show that the Pareto-optimal solutions at higher profits (with lower resource utilization rates) are more sensitive to the unit copper concentrate prices than those obtained in regions with lower profits.

Author(s):  
Xunhong Wang ◽  
Xiaowei Gu ◽  
Zaobao Liu ◽  
Qing Wang ◽  
Xiaochuan Xu ◽  
...  

The optimization of the production process of metal mines has been traditionally driven only by economic benefits while ignoring resource efficiency. However, it has become increasingly aware of the importance of resource efficiency since mineral resource reserves continue to decrease while the demand continues to grow. To better utilize the mineral resources for sustainable development, this paper proposes a multi-objective optimization model of the production process of metal mines considering both economic benefits and resource efficiency. Specifically, the goals of the proposed model are to maximize the profit and resource utilization rate. Then, the fast and elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II) is used to optimize the multi-objective optimization model. The proposed model has been applied to the optimization of the production process of a stage in the Huogeqi Copper Mine. The optimization results provide a set of Pareto-optimal solutions that can meet varying needs of decision makers. Moreover, compared with those of the current production indicators, the profit and resource utilization rate of some points in the optimization results can increase respectively by 2.99% and 2.64%. Additionally, the effects of the decision variables (geological cut-off grade, minimum industrial grade and loss ratio) on objective functions (profit and resource utilization rate) were discussed using variance analysis. The sensitivities of the Pareto-optimal solutions to the unit copper concentrate price were studied. The results show that the Pareto-optimal solutions at higher profits (with lower resource utilization rates) are more sensitive to the unit copper concentrate prices than those obtained in regions with lower profits.


2005 ◽  
Vol 13 (4) ◽  
pp. 501-525 ◽  
Author(s):  
Kalyanmoy Deb ◽  
Manikanth Mohan ◽  
Shikhar Mishra

Since the suggestion of a computing procedure of multiple Pareto-optimal solutions in multi-objective optimization problems in the early Nineties, researchers have been on the look out for a procedure which is computationally fast and simultaneously capable of finding a well-converged and well-distributed set of solutions. Most multi-objective evolutionary algorithms (MOEAs) developed in the past decade are either good for achieving a well-distributed solutions at the expense of a large computational effort or computationally fast at the expense of achieving a not-so-good distribution of solutions. For example, although the Strength Pareto Evolutionary Algorithm or SPEA (Zitzler and Thiele, 1999) produces a much better distribution compared to the elitist non-dominated sorting GA or NSGA-II (Deb et al., 2002a), the computational time needed to run SPEA is much greater. In this paper, we evaluate a recently-proposed steady-state MOEA (Deb et al., 2003) which was developed based on the ε-dominance concept introduced earlier (Laumanns et al., 2002) and using efficient parent and archive update strategies for achieving a well-distributed and well-converged set of solutions quickly. Based on an extensive comparative study with four other state-of-the-art MOEAs on a number of two, three, and four objective test problems, it is observed that the steady-state MOEA is a good compromise in terms of convergence near to the Pareto-optimal front, diversity of solutions, and computational time. Moreover, the ε-MOEA is a step closer towards making MOEAs pragmatic, particularly allowing a decision-maker to control the achievable accuracy in the obtained Pareto-optimal solutions.


2012 ◽  
Vol 197 ◽  
pp. 755-759
Author(s):  
Duo Nian Yu ◽  
Lu Yao Zhou ◽  
Li Li ◽  
Zheng Cai Hu

Head injury of pedestrian is the most common and fatal cause of mortality in vehicle-to-pedestrian crash. And the engine hood is most likely to cause harm to pedestrian head. Efforts to improve engine hood design, which minimize the head injury of pedestrian in vehicle-to-pedestrian crash, are becoming more and more important. In this study, an approximate model of hood thickness for three targets: HIC, mass and modality, is established. In order to meet the requirements of lightweight and reducing vibration and noise, approximate models iterate by the NSGA-II genetic optimization algorithm, and select the Pareto optimal solutions for thickness optimization. At last the study re-simulates the collision between pedestrian head and hood to verify the reliability of the obtained optimization results.


2015 ◽  
Vol 11 (02) ◽  
pp. 135-150 ◽  
Author(s):  
Kouhei Tomita ◽  
Minami Miyakawa ◽  
Hiroyuki Sato

Controlling the dominance area of solutions (CDAS) relaxes the concept of Pareto dominance with an user-defined parameter S. CDAS with S < 0.5 expands the dominance area and improves the search performance of multi-objective evolutionary algorithms (MOEAs) especially in many-objective optimization problems (MaOPs) by enhancing convergence of solutions toward the optimal Pareto front. However, there is a problem that CDAS with an expanded dominance area (S < 0.5) generally cannot approximate entire Pareto front. To overcome this problem we propose an adaptive CDAS (A-CDAS) that adaptively controls the dominance area of solutions during the solutions search. Our method improves the search performance in MaOPs by approximating the entire Pareto front while keeping high convergence. In early generations, A-CDAS tries to converge solutions toward the optimal Pareto front by using an expanded dominance area with S < 0.5. When we detect convergence of solutions, we gradually increase S and contract the dominance area of solutions to obtain Pareto optimal solutions (POS) covering the entire optimal Pareto front. We verify the effectiveness and the search performance of the proposed A-CDAS on concave and convex DTLZ3 benchmark problems with 2–8 objectives, and show that the proposed A-CDAS achieves higher search performance than conventional non-dominated sorting genetic algorithm II (NSGA-II) and CDAS with an expanded dominance area.


Author(s):  
Kyoko Tsuchida ◽  
◽  
Hiroyuki Sato ◽  
Hernan Aguirre ◽  
Kiyoshi Tanaka ◽  
...  

In this work, we analyze the functionality transition in the evolution process of NSGA-II and an enhanced NSGA-II with the method of controlling dominance area of solutions (CDAS) from the viewpoint of front distribution. We examine the relationship between the population of the first front consisting of non-dominated solutions and the values of two metrics, NORM and ANGLE, which measure convergence and diversity of Pareto-optimal solutions (POS), respectively. We also suggest potentials to further improve the search performance of the enhanced NSGA-II with CDAS by emphasizing the parameterS, which controls the degree of dominance by contracting or expanding the dominance area of solutions, before and after the boundary generation of functionality transition. Furthermore, we analyze the behavior of the evolution of the enhanced NSGA-II with CDAS using the best parameters combination and compare its performance with two other algorithms that enhance selection of NSGA-II.


Author(s):  
HAITAO LIAO ◽  
ZHAOJUN LI

This paper is focused on the multiobjective design of equivalent accelerated life test (ALT) plans. Equivalent ALT plans are expected to achieve the same statistical performance as a baseline ALT plan yet lead to other desired performance measures such as reduced test time and total cost. Before determining the desired multiobjective equivalent ALT plans, an efficient fast non-dominated sorting genetic algorithm (NSGA-II) is utilized to identify a set of Pareto optimal solutions. To handle a large number of Pareto optimal solutions, a self-organizing map (SOM) and data envelopment analysis (DEA) are sequentially applied to classify the Pareto solutions and reduce the size of the suggested solution set. This integrated approach allows for the tradeoff of information among the Pareto solutions and the reduction in the size of the solution set. It provides a useful tool for practitioners to make meaningful decisions in planning ALT experiments.


2015 ◽  
Vol 60 (2) ◽  
pp. 1037-1043
Author(s):  
Ł. Szparaga ◽  
P. Bartosik ◽  
A. Gilewicz ◽  
J. Ratajski

Abstract In the paper was proposed optimization procedure supporting the prototyping of the geometry of multi-module CrN/CrCN coatings, deposited on substrates from 42CrMo4 steel, in respect of mechanical properties. Adopted decision criteria were the functions of the state of internal stress and strain in the coating and substrate, caused by external mechanical loads. Using developed optimization procedure the set of optimal solutions (Pareto-optimal solutions) of coatings geometry parameters, due to the adopted decision criteria was obtained. For the purposes of analysis of obtained Pareto-optimal solutions, their mutual distance in the space of criteria and decision variables were calculated, which allowed to group solutions in the classes. Also analyzed the number of direct neighbors of Pareto-optimal solutions for the purposes of assessing the stability of solutions.


2009 ◽  
Vol 26 (06) ◽  
pp. 735-757 ◽  
Author(s):  
F. MIGUEL ◽  
T. GÓMEZ ◽  
M. LUQUE ◽  
F. RUIZ ◽  
R. CABALLERO

The generation of Pareto optimal solutions for complex systems with multiple conflicting objectives can be easier if the problem can be decomposed and solved as a set of smaller coordinated subproblems. In this paper, a new decomposition-coordination method is proposed, where the global problem is partitioned into subsystems on the basis of the connection structure of the mathematical model, assigning a relative importance to each of them. In order to obtain Pareto optimal solutions for the global system, the aforementioned subproblems are coordinated taking into account their relative importance. The scheme that has been developed is an iterative one, and the global efficient solutions are found through a continuous information exchange process between the coordination level (upper level) and the subsystem level (lower level). Computational experiments on several randomly generated problem instances show that the suggested algorithm produces efficient solutions within reasonable computational times.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mariana Souza Rocha ◽  
Luiz Célio Souza Rocha ◽  
Marcia Barreto da Silva Feijó ◽  
Paula Luiza Limongi dos Santos Marotta ◽  
Samanta Cardozo Mourão

PurposeThe mucilage of the Linum usitatissimum L. seed (Linseed) is one of the natural mucilages that presents a great potential to provide a food hydrocolloid with potential applications in both food and pharmaceutical industries. To increase the yield and quality of linseed oil during its production process, it is necessary to previously extract its polysaccharides. Because of this, flax mucilage production can be made viable as a byproduct of oil extraction process, which is already a product of high commercial value consolidated in the market. Thus, the purpose of this work is to optimize the mucilage extraction process of L. usitatissimum L. using the normal-boundary intersection (NBI) multiobjective optimization method.Design/methodology/approachCurrently, the variables of the process of polysaccharide extraction from different sources are optimized using the response surface methodology. However, when the optimal points of the responses are conflicting it is necessary to study the best conditions to achieve a balance between these conflicting objectives (trade-offs) and to explore the available options it is necessary to formulate an optimization problem with multiple objectives. The multiobjective optimization method used in this work was the NBI developed to find uniformly distributed and continuous Pareto optimal solutions for a nonlinear multiobjective problem.FindingsThe optimum extraction point to obtain the maximum fiber concentration in the extracted material was pH 3.81, temperature of 46°C, time of 13.46 h. The maximum extraction yield of flaxseed was pH 6.45, temperature of 65°C, time of 14.41 h. This result confirms the trade-off relationship between the objectives. NBI approach was able to find uniformly distributed Pareto optimal solutions, which allows to analyze the behavior of the trade-off relationship. Thus, the decision-maker can set extraction conditions to achieve desired characteristics in mucilage.Originality/valueThe novelty of this paper is to confirm the existence of a trade-off relationship between the productivity parameter (yield) and the quality parameter (fiber concentration in the extracted material) during the flaxseed mucilage extraction process. The NBI approach was able to find uniformly distributed Pareto optimal solutions, which allows us to analyze the behavior of the trade-off relationship. This allows the decision-making to the extraction conditions according to the desired characteristics of the final product, thus being able to direct the extraction for the best applicability of the mucilage.


Sign in / Sign up

Export Citation Format

Share Document