scholarly journals On Molecular Descriptors of Face-Centered Cubic Lattice

Processes ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 280 ◽  
Author(s):  
Hong Yang ◽  
Muhammad Aamer Rashid ◽  
Sarfraz Ahmad ◽  
Saima Sami Khan ◽  
Muhammad Kamran Siddiqui

Face-centered cubic lattice F C C ( n ) has received extensive consideration as of late, inferable from its recognized properties and non-poisonous nature, minimal effort, plenitude, and basic creation process. The graph of a face-centered cubic cross-section contains cube points and face centres. A topological index of a molecular graph G is a numeric amount identified with G, which depicts its topological properties. In this paper, using graph theory tools, we computed the molecular descriptors (topological indices)—to be specific, Zagreb-type indices, a forgotten index, a Balaban index, the fourth version of an atom–bond connectivity index, and the fifth version of a geometric arithmetic index for face-centered cubic lattice F C C ( n ) .

Author(s):  
N.-H. Cho ◽  
S. McKernan ◽  
C.B. Carter ◽  
K. Wagner

Interest has recently increased in the possibility of growing III-V compounds epitactically on non-polar substrates to produce device quality material. Antiphase boundaries (APBs) may then develop in the GaAs epilayer because it has sphalerite structure (face-centered cubic with a two-atom basis). This planar defect may then influence the electrical behavior of the GaAs epilayer. The orientation of APBs and their propagation into GaAs epilayers have been investigated experimentally using both flat-on and cross-section transmission electron microscope techniques. APBs parallel to (110) plane have been viewed at the atomic resolution and compared to simulated images.Antiphase boundaries were observed in GaAs epilayers grown on (001) Ge substrates. In the image shown in Fig.1, which was obtained from a flat-on sample, the (110) APB planes can be seen end-on; the faceted APB is visible because of the stacking fault-like fringes arising from a lattice translation at this interface.


2020 ◽  
Vol 44 (1) ◽  
pp. 32-38
Author(s):  
Hani Shaker ◽  
Muhammad Imran ◽  
Wasim Sajjad

Abstract Chemical graph theory has become a prime gadget for mathematical chemistry due to its wide range of graph theoretical applications for solving molecular problems. A numerical quantity is named as topological index which explains the topological characteristics of a chemical graph. Recently face centered cubic lattice FCC(n) attracted large attention due to its prominent and distinguished properties. Mujahed and Nagy (2016, 2018) calculated the precise expression for Wiener index and hyper-Wiener index on rows of unit cells of FCC(n). In this paper, we present the ECI (eccentric-connectivity index), TCI (total-eccentricity index), CEI (connective eccentric index), and first eccentric Zagreb index of face centered cubic lattice.


2009 ◽  
Vol 18 (08) ◽  
pp. 1159-1173 ◽  
Author(s):  
CASEY MANN ◽  
JENNIFER MCLOUD-MANN ◽  
RAMONA RANALLI ◽  
NATHAN SMITH ◽  
BENJAMIN MCCARTY

This article concerns the minimal knotting number for several types of lattices, including the face-centered cubic lattice (fcc), two variations of the body-centered cubic lattice (bcc-14 and bcc-8), and simple-hexagonal lattices (sh). We find, through the use of a computer algorithm, that the minimal knotting number in sh is 20, in fcc is 15, in bcc-14 is 13, and bcc-8 is 18.


2017 ◽  
Vol 50 (3) ◽  
pp. 830-839 ◽  
Author(s):  
S. M. Suturin ◽  
V. V. Fedorov ◽  
A. M. Korovin ◽  
N. S. Sokolov ◽  
A. V. Nashchekin ◽  
...  

The development of growth techniques aimed at the fabrication of nanoscale heterostructures with layers of ferroic 3dmetals on semiconductor substrates is very important for their potential usage in magnetic media recording applications. A structural study is presented of single-crystal nickel island ensembles grown epitaxially on top of CaF2/Si insulator-on-semiconductor heteroepitaxial substrates with (111), (110) and (001) fluorite surface orientations. The CaF2buffer layer in the studied multilayer system prevents the formation of nickel silicide, guides the nucleation of nickel islands and serves as an insulating layer in a potential tunneling spin injection device. The present study, employing both direct-space and reciprocal-space techniques, is a continuation of earlier research on ferromagnetic 3dtransition metals grown epitaxially on non-magnetic and magnetically ordered fluorides. It is demonstrated that arrays of stand-alone faceted nickel islands with a face-centered cubic lattice can be grown controllably on CaF2surfaces of (111), (110) and (001) orientations. The proposed two-stage nickel growth technique employs deposition of a thin seeding layer at low temperature followed by formation of the islands at high temperature. The application of an advanced three-dimensional mapping technique exploiting reflection high-energy electron diffraction (RHEED) has proved that the nickel islands tend to inherit the lattice orientation of the underlying fluorite layer, though they exhibit a certain amount of {111} twinning. As shown by scanning electron microscopy, grazing-incidence X-ray diffraction (GIXD) and grazing-incidence small-angle X-ray scattering (GISAXS), the islands are of similar shape, being faceted with {111} and {100} planes. The results obtained are compared with those from earlier studies of Co/CaF2epitaxial nanoparticles, with special attention paid to the peculiarities related to the differences in lattice structure of the deposited metals: the dual-phase hexagonal close-packed/face-centered cubic lattice structure of cobalt as opposed to the single-phase face-centered cubic lattice structure of nickel.


1959 ◽  
Vol 26 (2) ◽  
pp. 251-258
Author(s):  
C. W. Thurston ◽  
H. Deresiewicz

Abstract A granular medium is idealized here by a model composed of contiguous like spheres arranged in a face-centered cubic lattice. Total stress-strain relations for this model are derived by integrating incremental relations, given previously by Duffy and Mindlin, for a loading program which consists of a uniaxial compression applied concurrently with a related isotropic pressure. Further, the failure stress in uniaxial compression is determined as a function of initial pressure. Results of experimental work are reported which agree with predictions of the theory.


Sign in / Sign up

Export Citation Format

Share Document