On eccentricity-based topological descriptors of water-soluble dendrimers

2018 ◽  
Vol 74 (1-2) ◽  
pp. 25-33 ◽  
Author(s):  
Zahid Iqbal ◽  
Muhammad Ishaq ◽  
Adnan Aslam ◽  
Wei Gao

AbstractPrevious studies show that certain physical and chemical properties of chemical compounds are closely related with their molecular structure. As a theoretical basis, it provides a new way of thinking by analyzing the molecular structure of the compounds to understand their physical and chemical properties. The molecular topological indices are numerical invariants of a molecular graph and are useful to predict their bioactivity. Among these topological indices, the eccentric-connectivity index has a prominent place, because of its high degree of predictability of pharmaceutical properties. In this article, we compute the closed formulae of eccentric-connectivity–based indices and its corresponding polynomial for water-soluble perylenediimides-cored polyglycerol dendrimers. Furthermore, the edge version of eccentric-connectivity index for a new class of dendrimers is determined. The conclusions we obtained in this article illustrate the promising application prospects in the field of bioinformatics and nanomaterial engineering.

2019 ◽  
Vol 17 (1) ◽  
pp. 260-266 ◽  
Author(s):  
Imran Nadeem ◽  
Hani Shaker ◽  
Muhammad Hussain ◽  
Asim Naseem

Abstract The degree-based topological indices are numerical graph invariants which are used to correlate the physical and chemical properties of a molecule with its structure. Para-line graphs are used to represent the structures of molecules in another way and these representations are important in structural chemistry. In this article, we study certain well-known degree-based topological indices for the para-line graphs of V-Phenylenic 2D lattice, V-Phenylenic nanotube and nanotorus by using the symmetries of their molecular graphs.


2011 ◽  
Vol 382 ◽  
pp. 372-374
Author(s):  
Yong Jiang ◽  
Zhi Bin Jiang ◽  
Guo Jie Shao ◽  
Dong Cheng Guo ◽  
Yu Tian ◽  
...  

Purpose: The purpose of this study was to study the compositions of the polygonaceae medicinal plants called rumex root. Methods: Solvent method and chromatography was used to purificate the chemical compositions of Rumex, and the molecular structure of the compound was identified by physical and chemical properties and spectral data. Results: Two compounds were obtained from the ethanol extract of rumex root, which were identified as Chrysophanol and Physcione. Conclusions: Experimental basis was provided for the further study of the active ingredients of rumex root and the development and utilization of medical resources.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ghazanfar Abbas ◽  
Muhammad Ibrahim ◽  
Ali Ahmad ◽  
Muhammad Azeem ◽  
Kashif Elahi

Natural zeolites are commonly described as macromolecular sieves. Zeolite networks are very trendy chemical networks due to their low-cost implementation. Sodalite network is one of the most studied types of zeolite networks. It helps in the removal of greenhouse gases. To study this rich network, we use an authentic mathematical tool known as M-polynomials of the topological index and show some physical and chemical properties in numerical form, and to understand the structure deeply, we compare different legitimate M-polynomials of topological indices, concluding in the form of graphical comparisons.


2020 ◽  
Vol 21 (20) ◽  
pp. 7577
Author(s):  
Noriyuki Uchida ◽  
Takahiro Muraoka

Peptide-based fibrous supramolecular assemblies represent an emerging class of biomaterials that can realize various bioactivities and structures. Recently, a variety of peptide fibers with attractive functions have been designed together with the discovery of many peptide-based self-assembly units. Cross-linking of the peptide fibers is a key strategy to improve the functions of these materials. The cross-linking of peptide fibers forming three-dimensional networks in a dispersion can lead to changes in physical and chemical properties. Hydrogelation is a typical change caused by cross-linking, which makes it applicable to biomaterials such as cell scaffold materials. Cross-linking methods, which have been conventionally developed using water-soluble covalent polymers, are also useful in supramolecular peptide fibers. In the case of peptide fibers, unique cross-linking strategies can be designed by taking advantage of the functions of amino acids. This review focuses on the current progress in the design of cross-linked peptide fibers and their applications.


1938 ◽  
Vol 16b (2) ◽  
pp. 46-53 ◽  
Author(s):  
Blythe Alfred Eagles ◽  
Olga Okulitch ◽  
Arthur Stephen Kadzielawa

The influence of three distinct activators prepared from tomatoes, yeast, or liver, on the metabolism of two species of lactic acid bacteria has been studied. One of these activators is Bios II A, and the other two have been shown to be components constituting Bios II B. On the basis of their physical and chemical properties, it is suggested that the growth stimulants required by the lactic acid bacteria are identical with certain of the heat-stable accessory food factors of the Vitamin-B complex essential for the growth of animals.


1979 ◽  
Vol 34 (9) ◽  
pp. 1279-1285 ◽  
Author(s):  
R. Tacke ◽  
M. Strecker ◽  
W. S. Sheldrick ◽  
E. Heeg ◽  
B. Berndt ◽  
...  

Abstract Sila-difenidol (6b), a sila-analogue of the drug difenidol (6a), was synthesized according to Scheme 1. 6b and its new precursors 3 and 5 were characterized by their physical and chemical properties, and their structures confirmed by elementary analyses, 1H NMR and mass spectroscopy. 6 b crystallizes orthorhombic P212121 with a = 11.523(1), b = 14.366(4), c = 11.450(1) Å, Z = 4, Dber = 1.14 gcm-3. The structure was refined to R = 0.050 for 1897 reflexions. A strong nearly linear intramolecular O-H···N hydrogen bond of 2.685 Å is observed. The anticholinergic, histaminolytic and musculotropic spasmolytic activities of 6 a and 6 b are reported.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Jia-Bao Liu ◽  
Hani Shaker ◽  
Imran Nadeem ◽  
Muhammad Hussain

The degree-based topological indices are used to correlate the physical and chemical properties of a molecule with its chemical structure. Boron nanotubular structures are high-interest materials due to the presence of multicenter bonds and have novel electronic properties. These materials have some important issues in nanodevice applications like mechanical and thermal stability. Therefore, they require theoretical studies on the other properties. In this paper, we present certain degree-based topological indices such as ABC, the fourth ABC, GA, and the fifth GA indices for boron triangular and boron-α nanotubes.


2017 ◽  
Vol 5 (28) ◽  
pp. 5608-5615 ◽  
Author(s):  
Jianqiao Zhang ◽  
Chen Cai ◽  
Shumaila Razzaque ◽  
Irshad Hussain ◽  
Qun-Wei Lu ◽  
...  

Gold nanoclusters are used as excellent scaffolds for the development of chemical and biological sensors due to their outstanding physical and chemical properties.


2020 ◽  
Vol 13 (03) ◽  
pp. 1417-1423
Author(s):  
Erzhan Dzhakipbekov ◽  
Saule Sakibayeva ◽  
Nagima Dzhakipbekova ◽  
Botagoz Tarlanova ◽  
Guzaliya Sagitova ◽  
...  

2013 ◽  
Vol 275-277 ◽  
pp. 2131-2135 ◽  
Author(s):  
Jie Zhou ◽  
Lin Yang ◽  
Qian Lin ◽  
Jian Xin Cao

The phosphogypsum (PG) sample produced as the waste of the phosphoric acid fertilizer plant from Guizhou, China was studied for its properties and as a material for anhydrite cement. The impurity content, type and distribution, as well as thermal behavior and solubility of the PG were carefully studied by XRD, DTA techniques and gravimetric determination. The China Standard GB175-2007. The mineralogical studies were physical properties of the sample were studied as per the determined by XRD. The results showed that the impurities of PG are mainly water-soluble P2O5, F, organics and P2O5 and F in the gypsum lattice which has entered in to solid solution with gypsum as well as the insoluble Ca3(PO4)2 and CaF2. Experimental datum showed that a suitable anhydrite can be produced by heating PG at 1000 °C and PG up to 60% used can be as a main raw material in production of anhydrite cement.


Sign in / Sign up

Export Citation Format

Share Document