scholarly journals Study on the Law of Diesel Oil Carrying Water in Lanzhou–Chengdu–Chongqing Product Oil Pipeline Based on Large Eddy Simulation

Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1049
Author(s):  
Tao Zhang ◽  
Bin Chen ◽  
Kun Sun ◽  
Wenjie Chang

Water accumulation at the bottom of the product oil pipeline will lead to corrosion damage to the pipeline. The study on water carrying laws of refined oil could provide a reference for the safe operation of the pipeline. In this paper, the actual size of Lanzhou–Jiangyou section of Lanzhou–Chengdu–Chongqing pipeline was taken as the pipeline size. The volume of fluid (VOF) model of oil-water two-phase flow based on large eddy simulation (LES) was established. The numerical simulation of the water-carrying behavior of the product oil in the inclined pipeline was carried out. The LES-based two-phase flow model can capture the characteristics of stratified flow, wavy stratified flow, and dispersed flow under various operating conditions. The model was applied to simulate the water carrying process under various oil inlet velocities and the inclined pipe angles. The results show that as the pipeline inclined angle is 10~20° and the oil inlet velocity is 0.66 m/s, the flow patterns in the pipeline mainly include stratified flow and wavy stratified flow. As the oil inlet velocity is 0.88~1.55 m/s, the flow patterns in the pipe are mainly stratified flow, wavy stratified flow, and dispersed flow. As the inclined angle of the pipeline is 30~40°, the flow patterns in the pipeline mainly include stratified flows, wavy stratified flows, and dispersed flows. Finally, with the increase of flow time, water can be carried completely from the pipeline through the oil. With the increase of oil inlet velocity, the water carrying capacity of oil gradually increases. With the increase of pipeline inclination, the water carrying capacity of oil firstly increases and then decreases.

2018 ◽  
Vol 32 (12n13) ◽  
pp. 1840041
Author(s):  
Li-Qing Zhao ◽  
Jian-Hong Sun ◽  
Yang Lu

A heated plane water jet impinging vertically onto free water surface has been numerically studied based on large eddy simulation method coupled with the volume of fluid approach. The Boussinesq approximation is adopted to simulate the effect of buoyancy. Results showed that there exist two flow patterns for the plane thermal buoyant jet, which are the stable impinging flow pattern and the flapping impinging flow pattern. Distinct temperature stratification can be found in the stable impinging flow pattern, while it disappears in the flapping impinging flow pattern.


2020 ◽  
Vol 19 (3-5) ◽  
pp. 207-239
Author(s):  
Saman Salehian ◽  
Reda R Mankbadi

The focus of this work is on understanding the effect of water injection from the launch pad on the noise generated during rocket’s lift-off. To simplify the problem, we consider a supersonic jet impinging on a flat plate with water injection from the impingement plate. The Volume of Fluid model is adopted in this work to simulate the two-phase flow. A Hybrid Large Eddy Simulation – Unsteady Reynolds Averaged Simulation approach is employed to model turbulence, wherein Unsteady Reynolds Averaged Simulation is used near the walls, and Large Eddy Simulation is used elsewhere in the computational domain. The numerical issues associated with simulating the noise of two-phase supersonic flow are addressed. The pressure fluctuations on the impingement plate obtained from numerical simulations agree well with the experimental data. Furthermore, the predicted effect of water injection on the far-field broadband noise is consistent with that of the experiment. The possible mechanisms for noise reduction by water injection are discussed.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5208 ◽  
Author(s):  
Giulio Vita ◽  
Syeda Anam Hashmi ◽  
Simone Salvadori ◽  
Hassan Hemida ◽  
Charalampos Baniotopoulos

Predicting flow patterns that develop on the roof of high-rise buildings is critical for the development of urban wind energy. In particular, the performance and reliability of devices largely depends on the positioning strategy, a major unresolved challenge. This work aims at investigating the effect of variations in the turbulent inflow and the geometric model on the flow patterns that develop on the roof of tall buildings in the realistic configuration of the University of Birmingham’s campus in the United Kingdom (UK). Results confirm that the accuracy of Large Eddy Simulation (LES) predictions is only marginally affected by differences in the inflow mean wind speed and turbulence intensity, provided that turbulence is not absent. The effect of the presence of surrounding buildings is also investigated and found to be marginal to the results if the inflow is turbulent. The integral length scale is the parameter most affected by the turbulence characteristics of the inflow, while gustiness is only marginally influenced. This work will contribute to LES applications on the urban wind resource and their computational setup simplification.


2019 ◽  
Vol 208 ◽  
pp. 115156 ◽  
Author(s):  
Mohammad Haji Mohammadi ◽  
Fotis Sotiropoulos ◽  
Joshua R. Brinkerhoff

Sign in / Sign up

Export Citation Format

Share Document