scholarly journals Effects of Chopping Length and Additive on the Fermentation Quality and Aerobic Stability in Silage of Leymus chinensis

Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1283
Author(s):  
Zhiqiang Sun ◽  
Tingting Jia ◽  
Run Gao ◽  
Shengyang Xu ◽  
Zhe Wu ◽  
...  

The objective of this experiment was to evaluate the effects of the chopping length and additive on the fermentation characteristics and aerobic stability in silage of Leymus chinensis. L. chinensis was chopped to 1–2 cm and 4–5 cm, and immediately ensiled with the three treatments, i.e., 2% sucrose (fresh weight basis; SU), 1 × 105 cfu/g Lactobacillus plantarum (LP) or 1 × 105 cfu/g LP plus 2% sucrose (SU+LP). Silage treated with distilled water served as the control. After silage processing for 30 and 90 d, the fermentation quality of L. chinensis silage was evaluated. The composition of the fermentation products and the pH value in the silage were determined at 1, 3, 5 and 7 d after opening the silo. The results showed that in L. chinensis silage there was a lower pH value, higher lactic acid content and better aerobic stability at the 1–2 cm length than those at the 4–5 cm (p < 0.001). When the chopping length was 4–5 cm, the addition of either LP or SU+LP increased the content of lactic acid and acetic acid, and decreased the pH value and butyric acid content, compared to those of the control and SU treatment (p < 0.001). Furthermore, combination treatment of SU+LP performed better than LP alone, and the aerobic stability time of L. chinensis silage at 4–5 cm without any additives was the worst. In conclusion, enhanced fermentation quality and aerobic stability can be obtained by processing L. chinensis silage with the shorter length. When the L. chinensis is cut longer, e.g., 4–5 cm in this study, LP or SU+LP could be used as an effective method to improve the fermentation quality and aerobic stability of L. chinensis silage.

Author(s):  
Petr Doležal ◽  
Ladislav Zeman ◽  
Jan Doležal ◽  
Václav Pyrochta ◽  
Petr Mareš ◽  
...  

In the experiment was the effect of absorbens supplementation on the fermentation quality of brewers´ grains silage by comparing with the untreated control. As effective substance of experimental groups were barleygroats and malt sprouts. The addition of malt sprouts „B“ and barleygroats „C“ in our experiment conditions increased statistically significantly (P<0.01) the content of DM in silage. The addition of malt sprouts decreased pH value in experimental silage (4.29±0.007) in comparison with control silage (4.43±0.049). The malt sprouts increased significantly (P<0.01) the contents of lactic acid (67.15±2.796 g/kg DM), sum of acids (84.30±2.97 g/kg DM) and decreased (P<0.01) in the trial the ethanol content (0.51±0.102 g/kg DM) and acetic acid content (17.15±0.227 g/kg DM). Silage with malt sprouts has the highest (P<0.01) ammonia content from all silages in trial (966,67±33,33 mg/kg DM). The use of absorbens inhibited significantly (P<0.01) in comparison with control silage (without absorbens) the content of propionic and butyric acid production. Brewers´grain silage with malt sprouts and barleygroats addition were free of butyric and propionic acid, but had higher lactic acid content. These results indicate that malt sprouts addition in the ensiling process may improve the fermentation quality of the brewers´grain silage.


2012 ◽  
Vol 524-527 ◽  
pp. 2167-2171
Author(s):  
Ting Ting Ning ◽  
Chun Cheng Xu ◽  
Hui Li Wang ◽  
Wei Hao ◽  
Heng Lei

This experiment was conducted to determine the ensiling characteristics and microbial changes of fodder ramie silage treated without additive (Control), or with molasses (M), lactic acid bacteria (LAB), and mixtures of lactic acid bacteria and molasses (LABM). Triplicate samples were randomly opened on days 0, 3, 7, 14, 28 and 60 of ensiling for sampling and the contents were processed for quality assessment and laboratory analysis. Compared with control silage, addition of M and LABM decreased pH and butyric acid while increasing lactic acid during ensiling (P < 0.05). For the LAB treatment, the pH value declined slowly at initial days then kept relatively stable at about 5.39 and the concentration of lactic acid increased for the first 7 days then maintained stable until day 60. The control silage showed a rise in pH and a significant decline in lactic acid concentration at later stage. Microbial changes had similar trend during ensiling for all the treatments where the lactic acid bacteria increased at initial days then showed a decline at later stage. Furthermore, LAB treatment had the highest (P<0.05) lactic acid bacteria population at almost all ensiling periods. It was concluded that both M and LABM treatment can improve the fermentation quality of fodder ramie silage to some extent, but the effects of adding lactic acid bacteria still need further research.


Author(s):  
Václav Pyrochta ◽  
Libor Kalhotka ◽  
Petr Doležal

In the experiment, the effect of additives supplementation on the fermentation quality of corn silage was examined, compared with the untreated control (K). The aditive „A“ contained bacterial component of (Propionibactrium acidipropionici – MA126/4U 3*1010 and Lactobacillus plantarum – MA18/5U). The effective substances of bacterial inoculants „B“, selected were bacterial strains of (Lactobacillus casei ssp. rhamnosus LC – 705 DSM 7061 4*1011, Propionibacterium freudenreichii spp. shermanii JS DSM 6067 2-4*1011). There were used as effective substances of bacterial inoculants „C“ lactic bacteria and enzyme (Lactobacillus plantarum CCM 3769 1.67*1010, Lactococcus lactis CCM 4754 1.67*1010, Enterococcus faecium CCM 6226 1.67*1010, Pediococcus pentosaceus CCM 3770 1,67*1010, cellulase, hemicellulase, sodium benzoate). They were applied in the dose of prescript by producer. At conservations with all aditivum were statistically significant (P < 0.01) increase of lactic acid formation from 55.31±9.72 g/kg DM of control silage to 59.60±10.84 g/kg DM aditivum „A“, 59.36±10.04 g/ kg DM aditivum „B“ rather to 60.74±9.90 g/kg DM aditivum „C“. Aditives „A“ and „B“ were statistically significant (P < 0.01) increase propoinic acid and total fermentation acid content in silages occured. The fermentation characteristics in the microbial aditivum silages by us were more favourable. The date of fermentation was statistically significant (P < 0.01) increase the contents of acetic acid from 45.49±2.83 g/kg DM of 4st day to 63.07±4.25 g/kg DM of 32ndday rather to 67.70±2.94 g/kg DM of 64st day. There were statistically significant (P < 0.01) increase contents of acetic acid and total acid content. The date of fermentation was statistically significant (P < 0.01) degressive of pH.


2013 ◽  
Vol 29 (1) ◽  
pp. 105-114
Author(s):  
B. Dinic ◽  
N. Djordjevic ◽  
D. Terzic ◽  
M. Blagojevic ◽  
J. Markovic ◽  
...  

In this experiment, wilted masses of red clover of cultivar K-17 from the first cut was ensiled in three treatments: a) no additives, b) with the addition of corn (6% of biomass) and c) with the addition of inoculant BioStabil Plus. The experiment design was according to the method of a completely random plan (single factorial trial) in triplicates. Based on the results it can be concluded that the wilted biomass of red clover can be successfully ensiled without additives. However, the inoculation of red clover biomass achieves the most favourable pH value (4.20), the lowest level of degradation of the protein expressed in the amount of NH3-N (107.7 gkg-1 N), the largest production of lactic acid (91.3 gkg-1 DM) and acetic acid (42.6 gkg-1 DM), in the absence of butyric acid. Adding maize meal in the amount of 6% contributed to somewhat more favourable fermentation and increase of the energy value of silage. When using the DLG and Weissbach methods for assessing the quality of silage, all silages were classified into the first class. Contrary to this, according to the Zelter method, control and inoculated silages were evaluated as class III, because of the large amounts of acetic acid. In practices inoculants based on homo-and hetero-fermentative bacteria of lactic acid fermentation are recommended for use, because the increased production of acetic acid contributes positively to te aerobic stability of silage.


2021 ◽  
Vol 12 ◽  
Author(s):  
Haiwen Xu ◽  
Lin Sun ◽  
Na Na ◽  
Chao Wang ◽  
Guomei Yin ◽  
...  

This study aimed to reveal the bacterial community and fermentation quality of Leymus chinensis silage during the fermentation process. L. chinensis was harvested at the heading stage, and ensiled with lactic acid bacteria (LAB, L), water (W), or a combination of both (LW) in vacuum-sealed plastic bags. As a control silage, untreated L. chinensis silage was also assessed. The samples were taken at 0, 5, 15, 35, and 60 days after ensiling. The bacterial community structure was assessed by plate cultivation and Illumina sequencing, and the fermentation parameters were also analyzed. Fresh L. chinensis contained low moisture (509 g/kg) and LAB (3.64 log colony-forming units/g fresh weight). Control silage displayed higher pH and lower lactic acid (LA) than other treatments during ensilage (p &lt; 0.05); moreover, LW-treatment had lower pH from 5 to 35 days and greater LA at 5 days than L- and W-treatments (p &lt; 0.05). During the fermentation process, Lactobacillus in L- and LW-treatments was the most dominant bacterial genus (&gt;97%), had higher abundance than that in control silage and W-treatment (p &lt; 0.05), and correlated negatively with other main genera and pH, and positively with LA and acetic acid (p &lt; 0.05). Moreover, Lactobacillus had considerable abundance in W-treatment from 5 to 15 days (81.38–85.86%). Enterobacteriaceae had the most abundance among bacteria in control silage during ensiling (49.31–69.34%), and in W-treatment from 35 to 60 days (47.49–54.15%). The L-, W-, and LW-treatments displayed the aggregated bacterial community at 5 and 15 days, with W-treatment diverging from L- and LW-treatments at 35 and 60 days. Overall, the low moisture and/or insufficient LAB in fresh L. chinensis led to Enterobacteriaceae dominating bacterial community and contributing to the high pH and low LA in control silage during the fermentation process. Applying L, W, or LW contributed to Lactobacillus succession, LA production, and pH reduction during early stage of fermentation; moreover, treating with L and LW displayed more efficiency. Lactobacillus dominated the entire ensilage process in L- and LW-treatments and the early stage of fermentation in W-treatment, and contributed to the satisfactory fermentation quality of L. chinensis silage. The L- and LW-treatments displayed a similar pattern of bacterial succession during ensiling.


2011 ◽  
Vol 56 (No. 10) ◽  
pp. 427-432 ◽  
Author(s):  
Y. Tyrolová ◽  
A. Výborná

The objectives of the study were to evaluate the effects of wilting and additives on the fermentation quality of field pea silage, and to determine the rumen degradability of organic matter of pea silage. The following additives were used: commercial bacterial inoculant (1 g/t) containing homofermentative lactic acid bacteria &ndash; Lactobacillus rhamnosus (NCIMB 30121) and Enterococcus faecium (NCIMB 30122) and chemical additive containing formic acid, propionic acid, ammonium formate and benzoic acid (4 l/t). Compared to the control and chemical additive, the addition of the inoculant to wilted silage increased the lactic acid content (P &lt; 0.05) and lactic:acetic ratio (P &lt; 0.001). Both bacterial and chemical additives decreased (P &lt;&nbsp;0.001) the pH value of wilted silage. Differences between the control and chemically treated unwilted silage were also significant (P &lt; 0.01). The pH value of silage with chemical additive was lower compared to the control. Proteolysis determined in wilted silage was lower compared to unwilted silage. Rumen degradability of organic matter in wilted silage treated with the chemical additive was found to be higher (P &lt; 0.05) than in control and inoculant treated silages.


2020 ◽  
Vol 11 ◽  
Author(s):  
Mao Li ◽  
Lidong Zhang ◽  
Qing Zhang ◽  
Xuejuan Zi ◽  
Renlong Lv ◽  
...  

The microbiota and fermentation quality of cassava foliage (CF) ensiled in the absence of additive (CK), or the presence of citric acid (CA), malic acid (MA), and their combination with a Lactobacillus plantarum strain (CAL and MAL)were investigated. These additives reduced (P &lt; 0.05) the pH, butyric acid, and ammonia-N contents but increased (P &lt; 0.05) the lactic acid content, and CAL and MAL showed similar remarkable effects. Paenibacillus (mean, 27.81%) and Bacillus (mean, 16.04%) were the predominant strains in CF silage. The addition of CA or MAL increased the abundance of Paenibacillus (25.81–52.28% and 47.97%, respectively), and the addition of MA increased the abundance of Bacillus (15.76–32.48%) compared with the CK group. Moreover, CAL and MAL increased the abundances of the potentially desirable bacteria Cellulosimicrobium (CAL 0–12.73%), Hyphomicrobium (0–7.90% and 8.94%), and Oceanobacillus (0–8.37% and 3.08%) compared with the CK group. These findings suggested that CA and MA could enhance the silage quality of CF, and their combinations with Lactobacillus plantarum were more effective.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nittaya Pitiwittayakul ◽  
Smerjai Bureenok ◽  
Jan Thomas Schonewille

The aim of the present study was to isolate and identify lactic acid bacteria (LAB) from fermented juice of tropical crops such as Napier grass, Ruzi grass, Purple guinea grass, Stylo legume, and Leucaena and their application to improve the quality of tropical crop silage. Fifteen strains of LAB were isolated. The LAB strains were Gram-positive and catalase-negative bacteria and could be divided into three groups, i.e., Pediococcus pentosaceus, Lactiplantibacillus (para)plantarum, and Limosilactobacillus fermentum according to the biochemical API 50CH test. Based on the analysis of 16S rRNA sequence, the strains isolated in the group L. (para)plantarum were distinguished. Two isolates (N3 and G4) were identified as Lactiplantibacillus plantarum. Three isolates (St1, St2, and St3) were identified as L. paraplantarum. In addition, the identification of other isolates was confirmed in the group P. pentosaceus (R1, R4, R5, R8, R11, and L1) and the group L. fermentum (N4, G6, G7, and N4). All selected strains were able to grow at 50°C. All LAB strains showed antimicrobial activity against Escherichia coli ATCC 25922, Shigella sonnei ATCC 25931, Pseudomonas aeruginosa ATCC 27853, and Bacillus cereus ATCC 11778. Four selected LAB strains (St1, St3, N4, and R4) were tested for their capacity to successfully ensile Stylo legume (Stylosanthes guianensis CIAT184). Stylo silages treated with LAB were well preserved, the NH3–N and butyric acid contents were lower, and the lactic acid content was higher than those in the control (p &lt; 0.05). The acetic acid content was the highest in R4-treated silage among the treatments (p &lt; 0.05). The crude protein (CP) content of St1-silage was significantly (p &lt; 0.05) higher than the others. The inoculation of thermotolerant LAB selected from fermented juice of epiphytic lactic acid bacteria (FJLB) was found to be highly instrumental to obtain well-preserved silage from the Stylo legume.


2020 ◽  
Author(s):  
Fengyuan Yang ◽  
Yanping Wang ◽  
Shanshan Zhao ◽  
Yuan Wang

Abstract Background The objective of this study was to investigate the mechanism of Lactobacillus plantarum (L. plantarum) involved in improving fermentation quality of naturally ensiled alfalfa under poor conditions. Results High-moisture wilted alfalfa was ensiled without inoculants (CK) or with inoculation of two L. plantarum additives (LPI and LPII). The pH and fermentation products of silage were investigated, and the bacterial community compositions were analyzed. The L. plantarum inoculants significantly enhanced the lactic acid fermentation in terms of promotions in pH decline, lactic acid accumulation, and Lactobacillus abundance for both periods. At 90 d, silage in CK exhibited a high pH, a loss in dry matter, and a high concentration of ammoniacal nitrogen. The inoculations of L. plantarum significantly inhibited the growth of Clostridia, and reduced ammoniacal nitrogen concentration in silage (P < 0.05). Conclusions Inoculation with L. plantarum improved the fermentation quality of alfalfa silage and inhibited the growth of spoilage microorganisms, and further delayed decomposition of alfalfa silage under adverse ensiling conditions.


Sign in / Sign up

Export Citation Format

Share Document