scholarly journals Microbial Production and Enzymatic Biosynthesis of γ-Aminobutyric Acid (GABA) Using Lactobacillus plantarum FNCC 260 Isolated from Indonesian Fermented Foods

Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 22
Author(s):  
Ida Bagus Agung Yogeswara ◽  
Suwapat Kittibunchakul ◽  
Endang Sutriswati Rahayu ◽  
Konrad J. Domig ◽  
Dietmar Haltrich ◽  
...  

In the present study, we isolated and screened thirty strains of GABA (γ-aminobutyric acid)-producing lactic acid bacteria (LAB) from traditional Indonesian fermented foods. Two strains were able to convert monosodium glutamate (MSG) to GABA after 24 h of cultivation at 37 °C based on thin layer chromatography (TLC) screening. Proteomic identification and 16S rDNA sequencing using MALDI-TOF MS identified the strain as Lactobacillus plantarum designated as L. plantarum FNCC 260 and FNCC 343. The highest yield of GABA production obtained from the fermentation of L. plantarum FNCC 260 was 809.2 mg/L of culture medium after 60 h of cultivation. The supplementation of 0.6 mM pyridoxal 5’-phosphate (PLP) and 0.1 mM pyridoxine led to the increase in GABA production to 945.3 mg/L and 969.5 mg/L, respectively. The highest GABA production of 1226.5 mg/L of the culture medium was obtained with 100 mM initial concentration of MSG added in the cultivation medium. The open reading frame (ORF) of 1410 bp of the gadB gene from L. plantarum FNCC 260 encodes 469 amino acids with a calculated molecular mass of 53.57 kDa. The production of GABA via enzymatic conversion of monosodium glutamate (MSG) using purified recombinant glutamate decarboxylase (GAD) from L. plantarum FNCC 260 expressed in Escherichia coli was found to be more efficient (5-fold higher within 6 h) than the production obtained from fermentation. L. plantarum FNCC 260 could be of interest for the synthesis of GABA.


Author(s):  
Ida Bagus Agung Yogeswara ◽  
Suwapat Kittibunchakul ◽  
Endang Sutriswati Rahayu ◽  
Konrad J. Domig ◽  
Dietmar Haltrich ◽  
...  

In the present study, we isolated and screened thirty strains of GABA-producing lactic acid bacteria (LAB) from Indonesian traditional fermented foods. Two strains were able to convert monosodium glutamate (MSG) to GABA after 24 h of cultivation at 37oC based on thin layer chromatography (TLC) screening. 16S rDNA sequencing and proteomic identification using MALDI-TOF MS identified these two strains as Lactobacillus plantarum designated as L. plantarum FNCC 260 and L. plantarum FNCC 343. The highest yield of GABA production obtained from the fermentation of L. plantarum FNCC 260 was 809.2 mg/l of culture medium after 60 h of cultivation. Supplementation of 0.6 mM pyridoxal 5’-phosphate (PLP) and 0.1 mM pyridoxine led to the increase in GABA production to 945.3 mg/l and 969.5 mg/l, respectively. The highest GABA production of 1226.5 mg/l of culture medium was obtained with 100 mM initial concentration of MSG added in the cultivation medium. The open reading frame (ORF) of 1410 bp of the gadB gene from L. plantarum FNCC 260 encodes 469 amino acids with a calculated molecular mass of 53.57 kDa. The production of GABA via enzymatic conversion of monosodium glutamate (MSG) using purified recombinant glutamate decarboxylase (GAD) from L. plantarum FNCC 260 expressed in Escherichia coli was found to be more efficient (5-fold higher within 6 h) than the production obtained from fermentation. L. plantarum FNCC 260 could be of interest for the synthesis of GABA.



Author(s):  
Cat Thien Phuc ◽  
Doan Thi Thanh Vinh ◽  
Truong Khoa My ◽  
Tran Thi Thu Hien ◽  
Nguyen Anh Dung ◽  
...  

Lactic acid bacteria play a vital role in biosynthesis of γ -aminobutyric acid (GABA) in the presence of glutamic acid - major substrate for the process. In recent study, Lactobacillus fermentum A01 (L. fermentum A01) isolated from various sources in Vietnam were screened for bacteria strains with high efficiency in GABA formation. L. fermentum was cultured in MRS broth containing 25 mg/mL monosodium glutamate (MSG), at pH of 6.5 and incubated at the optimal conditions (37ºC, for 24, 48, 72 h). After extraction and thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC) analysis, L. fermentum A01 showed the GABA yield about 1.34 mg/g in dried supernatant, suggesting L. fermentum A01 to be a promising GABA producer for food and pharmaceutical applications.



PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2292 ◽  
Author(s):  
Wen Li ◽  
Mingming Wei ◽  
Junjun Wu ◽  
Xin Rui ◽  
Mingsheng Dong

In this study, novel fermented chickpea milk with highγ-aminobutyric acid (GABA) content and potential neuroprotective activity was developed. Fermentation starter that can produce GABA was selected from 377 strains of lactic acid bacteria isolated from traditional Chinese fermented foods. Among the screened strains, strain M-6 showed the highest GABA-producing capacity in De Man–Rogosa and Sharp (MRS) broth and chickpea milk. M-6 was identified asLactobacillus plantarumbased on Gram staining, API carbohydrate fermentation pattern testing, and 16s rDNA sequencing. The complete gene encoding glutamate decarboxylase was cloned to confirm the presence of the gene inL. plantarumM-6. The fermentation condition was optimized by response surface methodology. Results demonstrated thatL. plantarumM-6 produced the highest GABA content of 537.23 mg/L. The optimal condition included an inoculum concentration of 7%, presence of 0.2% (m/v) monosodium glutamate and 55 µ M pyridoxal-5-phosphate, incubation temperature of 39 °C and fermentation time of 48 h . GABA-enriched chickpea milk exerted protective effects on PC12 cells against MnCl2-induced injury. GABA-enriched chickpea milk improved cell viability and markedly attenuated the release of lactate dehydrogenase compared with the impaired cells.





2012 ◽  
Vol 586 ◽  
pp. 85-91
Author(s):  
Ying Guo Lü ◽  
Hui Zhang ◽  
Hui Yuan Yao

An enzymatic method for γ-aminobutyric acid (GABA) production was invested. With this method, rice bran was used as glutamate decarboxylase (GAD) source and exogenous monosodium glutamate(MSG) was used as substrate. We stimulated the rice bran GAD via regulating the temperature, pH, reaction time, buffer and adding PLP, Ca2+ and substrate. In the existence of PLP and Ca2+, the GABA content of rice bran had been improved by about 45 fold. The GABA production reached 2.3g/100g bran, and the Glu conversion reached 100%. As rice bran is a by-product in rice processing and a large quantity of rice bran is commercially available, our study illuminated a safe and efficient way to produce GABA and GABA enriched food.



2021 ◽  
Vol 63 (1) ◽  
pp. 42-48
Author(s):  
Dai Hung Ngo ◽  
◽  
Quoc Tuan Tran ◽  
Thi Nhat Hang Nguyen ◽  
Dai Nghiep Ngo ◽  
...  

Gamma-aminobutyric acid (GABA) is a potent bioactive component that widely exists in both plants and animals, has numerous health benefits. This study aimed to optimise the fermentation process conditions for the growth of Lactobacillus fermentum from rice bran extracts that have high potential to produce GABA. GABA content was assessed by thin-layer chromatography (TLC) method. In this study, fermenting conditions for medium production of GABA by L. fermentum from rice bran extracts were optimised. L. fermentum showed high potential for GABA-producing ability. Some factors influencing the GABA production such as carbon sources, nitrogen sources, mineral salt sources, substrate concentration of monosodium glutamate (MSG), pH, and the time of fermentation were investigated. When the L. fermentum is cultivated in the rice bran extracts medium supplemented with 1.5% lactose, 2% yeast extract, and 1% MSG with pH 6.0 in 48 h, this strain showed high GABA at a concentration of 736 mg/l.



2019 ◽  
Vol 69 (13) ◽  
pp. 1435-1443 ◽  
Author(s):  
Andrea Mancini ◽  
Ilaria Carafa ◽  
Elena Franciosi ◽  
Tiziana Nardin ◽  
Benedetta Bottari ◽  
...  

Abstract Purpose γ-Aminobutyric acid (GABA) is recognised as a potential metabolic bioactive food ingredient with increasing evidence of its effects on the gut-brain axis and systemic metabolic health. Different lactic acid bacteria are capable of producing GABA, particularly strains of Lactobacillus brevis. In this study, we characterized a Lb. brevis isolated from traditional alpine cheese (Lb. brevis DSM 32386) for its ability to accumulate high levels of GABA in the culture medium and for other important probiotic phenotypic traits. Methods In vitro analysis were used to study the Lb. brevis DSM 32386 probiotic traits and the gene expression involved in GABA production Result Lactobacillus brevis DSM 32386 converted monosodium glutamate to GABA more efficiently than the type strain Lb. brevis DSM 20054, resulting in more than 200% of GABA produced. This ability seemed to be related to the higher transcriptional activation of the gene encoding for the glutamate (gad) decarboxylase antiporter (gadC) and regulator (gadR). Lactobacillus brevis DSM 32386 performed well in vitro under the stress conditions mimicking the gastro-intestinal tract, being resistant to acid pH (pH 2.5) and growing in simulated pancreatic fluid and 0.3% ox-bile. Conclusion These preliminary studies indicate that Lb. brevis DSM 32386 holds promise as a starter for GABA-rich dairy fermented foods and possibly a promising next-generation probiotic microorganism in the context of the gut (microbiota):brain axis.



2021 ◽  
Author(s):  
Li-Li Yao ◽  
Jia-Ren Cao ◽  
Chang-Jiang Lyu ◽  
Fang-Fang Fan ◽  
Hong-Peng Wang ◽  
...  

Abstract Objectives γ-Aminobutyric acid (GABA) is a non-protein amino acid, considered a potent bioactive compound. This study focused on biosynthesis of food-grade GABA by immobilized glutamate decarboxylase (GAD) from Lactobacillus plantarum in the rice vinegar and monosodium glutamate (MSG) reaction system.Results The gene encoding GadB from L. plantarum has been heterologously expressed in Lactococcus lactis and biochemically characterized. Recombinant GadB existed as a homodimer, and displayed maximal activity at 40℃ and pH 5.0. The Km value and catalytic efficiency (kcat/Km) of GadB for L-Glu was 22.33 mM and 1.04 L/(mmol·s), respectively, with a specific activity of 24.97 U/mg protein. Then, purified GadB was encapsulated in gellan gum beads. Compared to the free enzyme, immobilized GadB showed higher operational and storage stability. Finally, 9.82 to 21.48 g/L of GABA have been acquired by regulating the amounts of catalyst microspheres ranging from 0.5 to 0.8 g (wet weight) in 0.8 mL of the designed rice vinegar and MSG reaction system. Conclusions The method of production GABA by immobilized GadB microspheres mixed in the rice vinegar and MSG reaction system is introduced herein for the first time. Especially, the results obtained here meet the increased interest in the harnessing of biocatalyst to synthesize food-grade GABA.



Sign in / Sign up

Export Citation Format

Share Document