scholarly journals Position Deviation Control of Drilling Machine Using a Nonlinear Adaptive Backstepping Controller Based on a Disturbance Observer

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 237
Author(s):  
Huifu Ji ◽  
Songyong Liu

Thin coal seam mining is a development direction to solve the problem of energy supply at this stage, which cannot be realized by small working space, low automation, and drilling deviation. In this paper, a nonlinear adaptive backstepping controller based on a disturbance observer is proposed and used on a coal auger for position tracking control to achieve directional drilling. Firstly, a nonlinear dynamic model for the deflection control mechanism is built with the consideration of parameter uncertainties and external disturbances. Then, the parameter uncertainty and external disturbance are regarded as a system compound disturbance. Furthermore, a disturbance observer is designed to estimate the system compound disturbance and a nonlinear adaptive backstepping controller was proposed to compensate the system compound disturbance. The upper bound of the compound disturbance, which can effectively reduce the chattering in the directional control process, cannot be obtained easily. A stability analysis of the DCM (deviation control mechanism) with the proposed controller is proved based on the Lyapunov theory. Finally, an electro-hydraulic servo displacement control experimental system with matlab xPC target rapid prototyping technology and a prototype experiment system is established to verify the effectiveness of the proposed control strategy. The experimental results indicate that the proposed controller can yield more satisfactory position tracking performance, such as parameter uncertainties and external disturbances, than the conventional proportion integral derivative (PID) controller and an adaptive backstepping controller. Using the control strategy, technical breakthrough on horizontal directional drilling can be realized for thin coal seam mining.

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Zhi-Lin Zeng ◽  
Guo-Hua Xu ◽  
Yin Zhao ◽  
Fei Xie

This paper focuses on high precision leveling control of an underwater heavy load platform, which is viewed as an underwater parallel robot on the basis of its work pattern. The kinematic of platform with deformation is analyzed and the dynamics model of joint space is established. An adaptive backstepping controller according to Lyapunov's function is proposed for leveling control of platform based on joint space. Furthermore, the “lowest point fixed angle error” leveling scheme called “chase” is chosen for leveling control of platform. The digital simulation and practical experiment of single joint space actuator are carried out, and the results show high precision servo control of joint space. On the basis of this, the platform leveling control simulation relies on the hardware-in-loop system. The results indicate that the proposed controller can effectively restrain the influence from system parameter uncertainties and external disturbance to realize high precision leveling control of the underwater platform.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110105
Author(s):  
Xiaoyu Su ◽  
Bin Lin ◽  
Shuai Liu

The half-car suspension has the coupling of pitch angle and front and rear suspension. Especially when the suspension model has a series of uncertainties, the traditional linear control method is difficult to be applied to the half-car suspension model. At present, there is no systematic method to solve the suspension power. According to the energy storage characteristics of the elastic components of the suspension, the power calculation formula is proposed in this paper. This paper proposes a composite adaptive backstepping control scheme for the half-car active suspension systems. In this method, the correlation information between the output error and the parameter estimation error is used to construct the adaptive law. According to the energy storage characteristics of the elastic components of the suspension, the power calculation formula is introduced. The compound adaptive law and the ordinary adaptive law have good disturbance suppression, both of which can solve the pitching angle problem of the semi-car suspension, but the algorithm of the compound adaptive law is superior in effect. In terms of vehicle comfort, the algorithm of the general adaptive law can achieve stability quickly, but compared with the composite adaptive law, its peak value and jitter are higher, while the algorithm of the composite adaptive law is relatively gentle and has better adaptability to human body. In terms of vehicle handling, both control algorithms can maintain driving safety under road excitation, and the compound adaptive algorithm appears to have more advantages. Compared with the traditional adaptive algorithm, the power consumption of the composite adaptive algorithm is relatively lower than that of the former in the whole process. The simulation results show that the ride comfort, operating stability and safety of the vehicle can be effectively improved by the composite adaptive backstepping controller, and the composite adaptive algorithm is more energy-saving than the conventional adaptive algorithm based on projection operator.


2017 ◽  
Vol 45 (20) ◽  
pp. 2275-2292 ◽  
Author(s):  
Tushar Kanti Roy ◽  
Md Apel Mahmud ◽  
Amanullah Maung Than Oo ◽  
Ramesh Bansal ◽  
Md Enamul Haque

2017 ◽  
Vol 89 (3) ◽  
pp. 415-424 ◽  
Author(s):  
Seyed Hamed Seyedipour ◽  
Mohsen Fathi Jegarkandi ◽  
Saeed Shamaghdari

Purpose The purpose of this paper is to design an adaptive nonlinear controller for a nonlinear system of integrated guidance and control. Design/methodology/approach A nonlinear integrated guidance and control approach is applied to a homing, tail-controlled air vehicle. Adaptive backstepping controller technique is used to deal with the problem, and the Lyapanov theory is used in the stability analysis of the nonlinear system. A nonlinear model of normal force coefficient is obtained from an existing nonlinear model of lift coefficient which was validated by open loop response. The simulation was performed in the pitch plane to prove the benefits of the proposed scheme; however, it can be readily extended to all the three axes. Findings Monte Carlo simulations indicate that using nonlinear adaptive backstepping formulation meaningfully improves the performance of the system, while it ensures stability of a nonlinear system. Practical implications The proposed method could be used to obtain better performance of hit to kill accuracy without the expense of control effort. Originality/value A nonlinear adaptive backstepping controller for nonlinear aerodynamic air vehicle is designed and guaranteed to be stable which is a novel-based approach to the integrated guidance and control. This method makes noticeable performance improvement, and it can be used with hit to kill accuracy.


Sign in / Sign up

Export Citation Format

Share Document