scholarly journals Coarse-Grain DEM Modelling in Fluidized Bed Simulation: A Review

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 279
Author(s):  
Alberto Di Renzo ◽  
Erasmo Napolitano ◽  
Francesco Di Maio

In the last decade, a few of the early attempts to bring CFD-DEM of fluidized beds beyond the limits of small, lab-scale units to larger scale systems have become popular. The simulation capabilities of the Discrete Element Method in multiphase flow and fluidized beds have largely benefitted by the improvements offered by coarse graining approaches. In fact, the number of real particles that can be simulated increases to the point that pilot-scale and some industrially relevant systems become approachable. Methodologically, coarse graining procedures have been introduced by various groups, resting on different physical backgrounds. The present review collects the most relevant contributions, critically proposing them within a unique, consistent framework for the derivations and nomenclature. Scaling for the contact forces, with the linear and Hertz-based approaches, for the hydrodynamic and cohesive forces is illustrated and discussed. The orders of magnitude computational savings are quantified as a function of the coarse graining degree. An overview of the recent applications in bubbling, spouted beds and circulating fluidized bed reactors is presented. Finally, new scaling, recent extensions and promising future directions are discussed in perspective. In addition to providing a compact compendium of the essential aspects, the review aims at stimulating further efforts in this promising field.

Energy ◽  
2019 ◽  
Vol 166 ◽  
pp. 183-192 ◽  
Author(s):  
Ji-Hong Moon ◽  
Sung-Ho Jo ◽  
Sung Jin Park ◽  
Nguyen Hoang Khoi ◽  
Myung Won Seo ◽  
...  

Author(s):  
Zhou Weiqing ◽  
Liu Meng ◽  
Huang Baohua ◽  
Qiu Xiaozhi

Abstract The experiment of improving Selective Non-Catalytic Reduction (SNCR) denitrification efficiency with gas additives (CH4 and C3H8) was carried out in the 50 kW circulating fluidized bed (CFB) pilot-scale equipment. The results show that the denitrification efficiency can reach 20 % when the reaction temperature is 650 °C, and the optimum mole ratio of C3H8/NH3 is 0.5. The denitrification efficiency can exceed 50 % when the mole ratio of C3H8/NH3 is 0.4 and the reaction temperature is 720 °C. However, the CH4 additive does not promote denitrification at this temperature. When the reaction temperature is 760 °C, the optimum denitrification efficiency of CH4 is 60 %, and the required CH4/NH3 is 0.8. Once the amount of CH4 exceeds the optimal value, the denitrification efficiency is suppressed. In addition, the concentrations of N2O and CO in the gas increase significantly with an increase of gas additives. Due to the incomplete oxidation of C3H8, a large amount of C2H4 is produced in the low-temperature region (< 750 °C) of SNCR.


2011 ◽  
Vol 32 (2) ◽  
pp. 91-100 ◽  
Author(s):  
Paweł Mirek

Scaling of flow phenomena in circulating fluidized bed boilers The paper presents an overview of scaling models used for determining hydrodynamic parameters of Circulating Fluidized Bed boilers. The governing equations and the corresponding dimensionless numbers are derived and presented for three different approaches to the scaling law of fluidized beds: classical dimensional analysis, differential equations and integrated solutions and experimental correlations. Some results obtained with these equations are presented. Finally, the capabilities and limitations of scaling experiments are discussed.


2013 ◽  
Vol 11 (1) ◽  
pp. 443-452 ◽  
Author(s):  
Shaikh Abdur Razzak

Abstract Feed-forward neural network (FFNN) modeling techniques are applied to study the flow behavior of different-size irregular-shape particles in a pilot scale liquid–solid circulating fluidized bed (LSCFB) riser. The adequacy of the developed model is examined by comparing the model predictions with experimental data obtained from the LSCFB using lava rocks (dmean 500 and 920 µm) and water as solids and liquid phases, respectively. Axial and radial solid holdup profiles are measured in the riser at four axial locations (H 1, 2, 3 and 3.8 m above the distributor) above the liquid distributor for different operating liquids. In the model training, the effects of various auxiliary and primary liquid velocities, superficial liquid velocities and superficial solid velocities on radial phase distribution at different axial positions are considered. For model validation along with other experimental parameters, dimensionless normalized superficial liquid velocities and net superficial liquid velocities are also introduced. The correlation coefficient values of the predicted output and the experimental data are found to be 0.95 and 0.94 for LR-500 and LR-920 particles, respectively which reflects the competency of the developed FFNN model.


Sign in / Sign up

Export Citation Format

Share Document