scholarly journals A New Approach to Optimize the Relative Clearance for Cylindrical Joints Manufactured by FDM 3D Printing Using a Hybrid Genetic Algorithm Artificial Neural Network and Rational Function

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 925
Author(s):  
Daniel-Constantin Anghel ◽  
Daniela Monica Iordache ◽  
Alin Daniel Rizea ◽  
Nicolae-Doru Stanescu

Nowadays, FDM technology permits obtaining functional prototypes or even end parts. The process parameters, such as layer thickness, building orientation, fill density, type of support, etc., have great influence on the quality, functionality and behavior of the obtained parts during their lifetime. In this paper, we present a study concerning the possibilities of obtaining certain values for clearance in revolute joints of non-assembly mechanisms manufactured by FDM 3D Printing. To ensure the functioning of the assembly, one must know the relationship between the imposed and measured clearances by taking into account the significant input data. One way is to use the automat learning method with an artificial neuronal network (ANN). The data necessary for the training, testing, and validation of ANN were experimentally obtained, using a complete L 27 Taguchi experimental plan. A total of 27 samples were printed with different values of the following parameters: the infill density, the imposed clearance between the shaft and the hole, and the layer thickness. ANN architecture corresponds to the Hecht–Kolmogorov theorem. Genetic algorithms (GA) were used for the optimization of the output. The Neural Network Toolbox from MATLAB was used for training the network and a hybrid tool genetic algorithm artificial neural network (GA-ANN) was used to minimize the value of the absolute relative clearance (arc). The minimum value of the absolute relative clearance established by GA-ANN was 0.0385788. This value was validated experimentally, with a relative difference of 4%. We also introduced a rational function to approximate the correlation between the input and output parameters. This function fulfills some frontier conditions resulted from practice. In addition, the function may be used to establish the designed clearance in order to obtain an imposed one.

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Mohammad Mehdi Arab ◽  
Abbas Yadollahi ◽  
Maliheh Eftekhari ◽  
Hamed Ahmadi ◽  
Mohammad Akbari ◽  
...  

Author(s):  
Sandip K Lahiri ◽  
Kartik Chandra Ghanta

Four distinct regimes were found existent (namely sliding bed, saltation, heterogeneous suspension and homogeneous suspension) in slurry flow in pipeline depending upon the average velocity of flow. In the literature, few numbers of correlations has been proposed for identification of these regimes in slurry pipelines. Regime identification is important for slurry pipeline design as they are the prerequisite to apply different pressure drop correlation in different regime. However, available correlations fail to predict the regime over a wide range of conditions. Based on a databank of around 800 measurements collected from the open literature, a method has been proposed to identify the regime using artificial neural network (ANN) modeling. The method incorporates hybrid artificial neural network and genetic algorithm technique (ANN-GA) for efficient tuning of ANN meta parameters. Statistical analysis showed that the proposed method has an average misclassification error of 0.03%. A comparison with selected correlations in the literature showed that the developed ANN-GA method noticeably improved prediction of regime over a wide range of operating conditions, physical properties, and pipe diameters.


Sign in / Sign up

Export Citation Format

Share Document