scholarly journals Single-Chamber Microbial Fuel Cell with Multiple Plates of Bamboo Charcoal Anode: Performance Evaluation

Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2194
Author(s):  
Chikashi Sato ◽  
N. Evelin Paucar ◽  
Steve Chiu ◽  
Muhammad Z. I. M. Mahmud ◽  
John Dudgeon

In this study, three single-chamber microbial fuel cells (MFCs), each having Pt-coated carbon cloth as a cathode and four bamboo charcoal (BC) plates as an anode, were run in a fed-batch mode, individually and in series. Simulated potato-processing wastewater was used as a substrate for supporting the growth of a mixed bacterial culture. The maximum power output increased from 0.386 mW with one MFC to 1.047 mW with three MFCs connected in series. The maximum power density, however, decreased from 576 mW/m2 (normalized to the cathode area) with one MFC to 520 mW/m2 with three MFCs in series. The experimental results showed that power can be increased by connecting the MFCs in series; however, choosing low resistance BC is crucial for increasing power density.

RSC Advances ◽  
2016 ◽  
Vol 6 (73) ◽  
pp. 68827-68834 ◽  
Author(s):  
Praveena Gangadharan ◽  
Indumathi M. Nambi ◽  
Jaganathan Senthilnathan ◽  
Pavithra V. M.

In the present study, a low molecular heterocyclic aminopyrazine (Apy)–reduced graphene oxide (r-GO) hybrid coated carbon cloth (r-GO–Apy–CC) was employed as an active and stable bio-electro catalyst in a microbial fuel cell (MFC).


2018 ◽  
Vol 8 (12) ◽  
pp. 2504
Author(s):  
Junxian Shi ◽  
Anhuai Lu ◽  
Haibin Chu ◽  
Hongyu Wu ◽  
Hongrui Ding

Developing simple and cheap electrocatalysts or photocatalysts for cathodes to increase the oxygen reduction process is a key factor for better utilization of microbial fuel cells (MFCs). Here, we report the investigation of natural wolframite employed as a low-cost cathode photocatalyst to improve the performance of MFCs. The semiconducting wolframite was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman spectroscopy. The band gap and photo respond activities were determined by UV-vis spectroscopy and linear sweep voltammetry (LSV), respectively. Compared with the normal graphite cathode, when MFCs were equipped with a wolframite-coated cathode, the maximum power density was increased from 41.47 mW·m−2 to 95.51 mW·m−2. Notably, the maximum power density further improved to 135.57 mW·m−2 under light irradiation, which was 2.4 times higher than with a graphite cathode. Our research demonstrated that natural wolframite, a low-cost and abundant natural semiconducting mineral, showed promise as an effective photocathode catalyst which has great potential applications related to utilizing natural minerals in MFCs and for environmental remediation by MFCs in the future.


Author(s):  
Jie Yang ◽  
Sasan Ghobadian ◽  
Reza Montazami ◽  
Nastaran Hashemi

Microbial fuel cell (MFC) technology is a promising area in the field of renewable energy because of their capability to use the energy contained in wastewater, which has been previously an untapped source of power. Microscale MFCs are desirable for their small footprints, relatively high power density, fast start-up, and environmentally-friendly process. Microbial fuel cells employ microorganisms as the biocatalysts instead of metal catalysts, which are widely applied in conventional fuel cells. MFCs are capable of generating electricity as long as nutrition is provided. Miniature MFCs have faster power generation recovery than macroscale MFCs. Additionally, since power generation density is affected by the surface-to-volume ratio, miniature MFCs can facilitate higher power density. We have designed and fabricated a microscale microbial fuel cell with a volume of 4 μL in a polydimethylsiloxane (PDMS) chamber. The anode and cathode chambers were separated by a proton exchange membrane. Carbon cloth was used for both the anode and the cathode. Shewanella Oneidensis MR-1 was chosen to be the electrogenic bacteria and was inoculated into the anode chamber. We employed Ferricyanide as the catholyte and introduced it into the cathode chamber with a constant flow rate of approximately 50 μL/hr. We used trypticase soy broth as the bacterial nutrition and added it into the anode chamber approximately every 15 hours once current dropped to base current. Using our miniature MFC, we were able to generate a maximum current of 4.62 μA.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5116
Author(s):  
Mariagiovanna Minutillo ◽  
Simona Di Micco ◽  
Paolo Di Giorgio ◽  
Giovanni Erme ◽  
Elio Jannelli

Microbial fuel cells (MFCs) have recently attracted more attention in the context of sustainable energy production. They can be considered as a future solution for the treatment of organic wastes and the production of bioelectricity. However, the low output voltage and the low produced electricity limit their applications as energy supply systems. The scaling up of MFCs both by developing bigger reactors with multiple electrodes and by connecting several cells in stacked configurations is a valid solution for improving these performances. In this paper, the scaling up of a single air-cathode microbial fuel cell with an internal volume of 28 mL, has been studied to estimate how its performance can be improved (1523 mW/m3, at 0.139 mA). Four stacked configurations and a multi-electrode unit have been designed, developed, and tested. The stacked MFCs consist of 4 reactors (28 mL × 4) that are connected in series, parallel, series/parallel, and parallel/series modes. The multi-electrode unit consists of a bigger reactor (253 mL) with 4 anodes and 4 cathodes. The performance analysis has point ed out that the multi-electrode configuration shows the lowest performances in terms of volumetric power density equal to 471 mW/m3 at 0.345 mA and volumetric energy density of 624.2 Wh/m3. The stacked parallel/series configuration assures both the highest volumetric power density, equal to 2451 mW/m3 (274.6 µW) at 0.524 mA and the highest volumetric energy density, equal to 2742.0 Wh/m3. These results allow affirming that to increase the electric power output of MFCs, the stacked configuration is the optimal strategy from designing point of view.


2019 ◽  
Vol 116 ◽  
pp. 00093
Author(s):  
Asimina Tremouli ◽  
Pavlos K. Pandis ◽  
Theofilos Kamperidis ◽  
Vassilis N. Stathopoulos ◽  
Christos Argirusis ◽  
...  

A stack of two identical single chamber microbial fuel cells (MFCs) was assessed during using fermentable house hold extract as substrate. The design of the MFC units was based on the single chamber membrane-less technology using four cathode electrodes. The total power output was 492 mW either in series or parallel connection considering a total anolyte volume of 240 cm3. During continuous operation, the COD removal was 80% for each cell and for both operation modes (series and parallel). The electrochemical profiles provided significant information on the behaviour of the stack. During continuous operation, parallel connection is preferred over series connection, as it results to the same power output values, and COD removal but it provides lower internal resistances leading to more stable electrochemical performance behaviour.


Author(s):  
Meishinta Ariyanti ◽  
Ganjar Samudro ◽  
Dwi Siwi Handayani

Compost Solid Phase Microbial Fuel Cells (CSMFCs) merupakan teknologi pengomposan yang diintegrasikan dengan sistem MFCs untuk menghasilkan kompos dan produksi biolistrik dari sampah padat organik. Penelitian ini bertujuan untuk meningkatkan kinerja CSMFCs melalui penerapan perlakuan optimal dari penelitian terdahulu seperti, kadar air 60%, volume sampah 2/3 reaktor, dan penambahan bioaktivator. CSMFCs dalam penelitian ini dilakukan dalam kondisi batch menggunakan reaktor tipe single chamber dan dual anode graphene. Sampah daun dan sampah sisa makanan digunakan sebagai substrat dalam studi ini. Bahan sampah tersebut divariasikan berdasarkan rasio bahan (sampah daun:sampah sisa makanan) yaitu 100:0, 0:100, dan 50:50. Hasil penelitian ini menunjukan kinerja CSMFCs yang optimum terdapat pada variasi sampah campuran keduanya dengan rasio bahan 50:50. Variasi ini dapat menghasilkan kompos yang baik, yaitu memenuhi SNI 19-7030-2004, serta produksi listrik yang cukup tinggi yaitu power density 41,6 mW/m2, coulombic efficiency 0,647% dan energy efficiency 0,0127%.


2019 ◽  
Vol 43 (24) ◽  
pp. 9389-9395 ◽  
Author(s):  
Cuie Zhao ◽  
Jinxiang Li ◽  
Yan Chen ◽  
Jianyu Chen

In this study, nitrogen- and sulfur-codoped graphene (N/S-G) was prepared and used as an efficient metal-free electrocatalyst for the oxygen reduction reaction (ORR) in microbial fuel cells (MFCs), exhibiting a maximum power density of 1368 mW m−2, relatively higher than that of commercial Pt/C.


2014 ◽  
Vol 548-549 ◽  
pp. 855-859
Author(s):  
Chin Tsan Wang

Sediment microbial fuel cells (SMFCs) produce electricity through the bacterial oxidation of organic matter contained in the sediment, but the power density is limited and needs to be improved. In this study, a new design of a fined-type cathode with carbon cloth embedded partly, as opposed to completely, in SMFCs were utilized. As a result, the design allowing the cathode to contact air will have a positive effect on the power performance and decrease the resistance of the inner system. The power density in the cases where the cathode was about half soaked was about two folds the case where it was soaked completely. Furthermore, SMFCs would also be seen as a driving force in hastening the COD removal because it was about 1.92-folds the COD removal of the cases where SMFCs where not present. These findings can be applied to sewage treatment and improving the power performance in SMFCs.


2011 ◽  
Vol 393-395 ◽  
pp. 1169-1172 ◽  
Author(s):  
Yu Lan Tang ◽  
Ya Ting He ◽  
Peng Fei Yu ◽  
Hong Sun ◽  
Jin Xiang Fu

The effects of temperature on electricity performance and microbial activity were investigated in single-chamber microbial fuel cell with proton exchange membrane (S-PEM-MFC) using glucose as substrate with phosphate buffer solution(PBS). The results showed that S-PEM-MFC able to adapt to a wide temperature range of 11, 18, 25, 30 and 35°C. The open circuit voltage, polarization, power density and microbial activity of S-PEM-MFC were increased with increasing temperature from 11 to 30°C. The maximum power density were 193.8mW∙m-3 at 30°C. Compared to 30°C, the battery open circuit voltage increased by only 4.8% at 35°C, while the polarization and power density is almost the same. These results demonstrate that according to the principle of economy which 30°C should be the optimal operating temperature of S-PEM-MFC.


Sign in / Sign up

Export Citation Format

Share Document