scholarly journals Evaluation of Landsat 8-Like Land Surface Temperature by Fusing Landsat 8 and MODIS Land Surface Temperature Product

Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2262
Author(s):  
Shenglin Li ◽  
Jinglei Wang ◽  
Dacheng Li ◽  
Zhongxin Ran ◽  
Bo Yang

High-spatiotemporal-resolution land surface temperature (LST) is a crucial parameter in various environmental monitoring. However, due to the limitation of sensor trade-off between the spatial and temporal resolutions, such data are still unavailable. Therefore, the generation and verification of such data are of great value. The spatiotemporal fusion algorithm, which can be used to improve the spatiotemporal resolution, is widely used in Landsat and MODIS data to generate Landsat-like images, but there is less exploration of combining long-time series MODIS LST and Landsat 8 LST product to generate Landsat 8-like LST. The purpose of this study is to evaluate the accuracy of the long-time series Landsat 8 LST product and the Landsat 8-like LST generated by spatiotemporal fusion. In this study, based on the Landsat 8 LST product and MODIS LST product, Landsat 8-like LST is generated using Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), Enhanced STARFM (ESTARFM), and the Flexible Spatiotemporal DAta Fusion (FSDAF) algorithm, and tested and verified in the research area located in Gansu Province, China. In this process, Landsat 8 LST product was verified based on ground measurements, and the fusion results were comprehensively evaluated based on ground measurements and actual Landsat 8 LST images. Ground measurements verification indicated that Landsat 8 LST product was highly consistent with ground measurements. The Root Mean Square Error (RMSE) was 2.862 K, and the coefficient of determination R2 was 0.952 at All stations. Good fusion results can be obtained for the three spatiotemporal algorithms, and the ground measurements verified at All stations show that R2 was more significant than 0.911. ESTARFM had the best fusion result (R2 = 0.915, RMSE = 3.661 K), which was better than STARFM (R2 = 0.911, RMSE = 3.746 K) and FSDAF (R2 = 0.912, RMSE = 3.786 K). Based on the actual Landsat 8 LST images verification, the fusion images were highly consistent with actual Landsat 8 LST images. The average RMSE of fusion images about STARFM, ESTARFM, and FSDAF were 2.608 K, 2.245 K, and 2.565 K, respectively, and ESTARFM is better than STARFM and FSDAF in most cases. Combining the above verification, the fusion results of the three algorithms were reliable and ESTARFM had the highest fusion accuracy.

2020 ◽  
Vol 12 (19) ◽  
pp. 3202
Author(s):  
Xinran Chen ◽  
Yulin Zhan ◽  
Yan Liu ◽  
Xingfa Gu ◽  
Tao Yu ◽  
...  

Accurate cropland classification is important for agricultural monitoring and related decision-making. The commonly used input spectral features for classification cannot be employed to effectively distinguish crops that have similar spectro-temporal features. This study attempted to improve the classification accuracy of crops using both the thermal feature, i.e., the land surface temperature (LST), and the spectral feature, i.e., the normalized difference vegetation index (NDVI), for classification. To amplify the temperature differences between the crops, a temperature index, namely, the modified land surface temperature index (mLSTI) was built using the LST. The mLSTI was calculated by subtracting the average LST of an image from the LST of each pixel. To study the adaptability of the proposed method to different areas, three study areas were selected. A comparison of the classification results obtained using the NDVI time series and NDVI + mLSTI time series showed that for long time series from June to November, the classification accuracy when using the mLSTI and NDVI time series was higher (85.6% for study area 1 in California, 96.3% for area 2 in Kansas, and 91.2% for area 3 in Texas) than that when using the NDVI time series alone (82.0% for area 1, 94.7% for area 2, and 90.9% for area 3); the same was true in most of the cases when using the shorter time series. With the addition of the mLSTI time series, the shorter time series achieved higher classification accuracy, which is beneficial for timely crop identification. The sorghum and soybean crops, which exhibit similar NDVI feature curves in this study, could be better distinguished by adding the mLSTI time series. The results demonstrated that the classification accuracy of crops can be improved by adding mLSTI long time series, particularly for distinguishing crops with similar NDVI characteristics in a given study area.


2020 ◽  
Vol 12 (5) ◽  
pp. 791 ◽  
Author(s):  
Jingjing Yang ◽  
Si-Bo Duan ◽  
Xiaoyu Zhang ◽  
Penghai Wu ◽  
Cheng Huang ◽  
...  

Land surface temperature (LST) is vital for studies of hydrology, ecology, climatology, and environmental monitoring. The radiative-transfer-equation-based single-channel algorithm, in conjunction with the atmospheric profile, is regarded as the most suitable one with which to produce long-term time series LST products from Landsat thermal infrared (TIR) data. In this study, the performances of seven atmospheric profiles from different sources (the MODerate-resolution Imaging Spectroradiomete atmospheric profile product (MYD07), the Atmospheric Infrared Sounder atmospheric profile product (AIRS), the European Centre for Medium-range Weather Forecasts (ECMWF), the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA2), the National Centers for Environmental Prediction (NCEP)/Global Forecasting System (GFS), NCEP/Final Operational Global Analysis (FNL), and NCEP/Department of Energy (DOE)) were comprehensively evaluated in the single-channel algorithm for LST retrieval from Landsat 8 TIR data. Results showed that when compared with the radio sounding profile downloaded from the University of Wyoming (UWYO), the worst accuracies of atmospheric parameters were obtained for the MYD07 profile. Furthermore, the root-mean-square error (RMSE) values (approximately 0.5 K) of the retrieved LST when using the ECMWF, MERRA2, NCEP/GFS, and NCEP/FNL profiles were smaller than those but greater than 0.8 K when the MYD07, AIRS, and NCEP/DOE profiles were used. Compared with the in situ LST measurements that were collected at the Hailar, Urad Front Banner, and Wuhai sites, the RMSE values of the LST that were retrieved by using the ECMWF, MERRA2, NCEP/GFS, and NCEP/FNL profiles were approximately 1.0 K. The largest discrepancy between the retrieved and in situ LST was obtained for the NCEP/DOE profile, with an RMSE value of approximately 1.5 K. The results reveal that the ECMWF, MERRA2, NCEP/GFS, and NCEP/FNL profiles have great potential to perform accurate atmospheric correction and generate long-term time series LST products from Landsat TIR data by using a single-channel algorithm.


2020 ◽  
Author(s):  
Nikos Alexandris ◽  
Matteo Piccardo ◽  
Vasileios Syrris ◽  
Alessandro Cescatti ◽  
Gregory Duveiller

<p>The frequency of extreme heat related events is rising. This places the ever growing number of urban dwellers at higher risk. Quantifying these phenomena is important for the development and monitoring of climate change adaptation and mitigation policies. In this context, earth observations offer increasing opportunities to assess these phenomena with an unprecedented level of accuracy and spatial reach. Satellite thermal imaging systems acquire Land Surface Temperature (LST) which is fundamental to run models that study for example hotspots and heatwaves in urban environments.</p><p>Current instruments include TIRS on board Landsat 8 and MODIS on board of Terra satellites. These provide LST products on a monthly basis at 100m and twice per day at 1km respectively. Other sensors on board geostationary satellites, such as MSG and GOES-R, produce sub-hourly thermal images. For example the SEVIRI instrument onboard MSG, captures images every 15 minutes. However, this is done at an even coarser spatial resolution, which is 3 to 5 km in the case of SEVIRI. Nevertheless, none of the existing systems can capture LST synchronously with fine spatial resolution at a high temporal frequency, which is a prerequisite for monitoring heat stress in urban environments.</p><p>Combining LST time series of high temporal resolution (i.e. sub-daily MODIS- or SEVIRI-derived data) with products of fine spatial resolution (i.e. Landsat 8 products), and potentially other related variables (i.e. reflectance, spectral indices, land cover information, terrain parameters and local climatic variables), facilitates the downscaling of LST estimations. Nonetheless, considering the complexity of how distinct surfaces within a city heat-up differently during the course of a day, such a downscaling is meaningful for practically synchronous observations (e.g. Landsat-8 and MODIS Terra’s morning observations).</p><p>The recently launched ECOSTRESS mission provides multiple times in a day high spatial resolution thermal imagery at 70m. Albeit, recording the same locations on Earth every few days at varying times. We explore the associations between ECOSTRESS and Landsat-8 thermal data, based on the incoming radiation load and distinct surface properties characterised from other datasets. In our approach, first we upscale ECOSTRESS data to simulate Landsat-8 images at moments that coincide the acquisition times of other sensors products. In a second step, using the simulated Landsat-8 images, we downscale LST products acquired at later times, such as MODIS Aqua (ca. 13:30) or even the hourly MSG data. This composite downscaling procedure enables an enhanced LST estimation that opens the way for better diagnostics of the heat stress in urban landscapes.</p><p>In this study we discuss in detail the concepts of our approach and present preliminary results produced with the JEODPP, JRC's high throughput computing platform.</p>


2021 ◽  
Vol 13 (19) ◽  
pp. 3885
Author(s):  
Xinming Zhu ◽  
Xiaoning Song ◽  
Pei Leng ◽  
Xiaotao Li ◽  
Liang Gao ◽  
...  

Land surface temperature (LST) is a crucial biophysical parameter related closely to the land–atmosphere interface. Satellite thermal infrared measurement provides an effective method to derive LST on regional and global scales, but it is very hard to acquire simultaneously high spatiotemporal resolution LST due to its limitation in the sensor design. Recently, many LST downscaling and spatiotemporal image fusion methods have been widely proposed to solve this problem. However, most methods ignored the spatial heterogeneity of LST distribution, and there are inconsistent image textures and LST values over heterogeneous regions. Thus, this study aims to propose one framework to derive high spatiotemporal resolution LSTs in heterogeneous areas by considering the optimal selection of LST predictors, the downscaling of MODIS LST, and the spatiotemporal fusion of Landsat 8 LST. A total of eight periods of MODIS and Landsat 8 data were used to predict the 100-m resolution LST at prediction time tp in Zhangye and Beijing of China. Further, the predicted LST at tp was quantitatively contrasted with the LSTs predicted by the regression-then-fusion strategy, STARFM-based fusion, and random forest-based regression, and was validated with the actual Landsat 8 LST product at tp. Results indicated that the proposed framework performed better in characterizing LST texture than the referenced three methods, and the root mean square error (RMSE) varied from 0.85 K to 2.29 K, and relative RMSE varied from 0.18 K to 0.69 K, where the correlation coefficients were all greater than 0.84. Furthermore, the distribution error analysis indicated the proposed new framework generated the most area proportion at 0~1 K in some heterogeneous regions, especially in artificial impermeable surfaces and bare lands. This means that this framework can provide a set of LST dataset with reasonable accuracy and a high spatiotemporal resolution over heterogeneous areas.


2021 ◽  
Vol 13 (8) ◽  
pp. 1580
Author(s):  
Shumin Wang ◽  
Youming Luo ◽  
Xia Li ◽  
Kaixiang Yang ◽  
Qiang Liu ◽  
...  

Land surface temperature (LST) is a vital physical parameter in geoscience research and plays a prominent role in surface and atmosphere interaction. Due to technical restrictions, the spatiotemporal resolution of satellite remote sensing LST data is relatively low, which limits the potential applications of these data. An LST downscaling algorithm can effectively alleviate this problem and endow the LST data with more spatial details. Considering the spatial nonstationarity, downscaling algorithms have been gradually developed from least square models to geographical models. The current geographical LST downscaling models only consider the linear relationship between LST and auxiliary parameters, whereas non-linear relationships are neglected. Our study addressed this issue by proposing an LST downscaling algorithm based on a non-linear geographically weighted regressive (NL-GWR) model and selected the optimal combination of parameters to downscale the spatial resolution of a moderate resolution imaging spectroradiometer (MODIS) LST from 1000 m to 100 m. We selected Jinan city in north China and Wuhan city in south China from different seasons as study areas and used Landsat 8 images as reference data to verify the downscaling LST. The results indicated that the NL-GWR model performed well in all the study areas with lower root mean square error (RMSE) and mean absolute error (MAE), rather than the linear model.


2021 ◽  
Vol 13 (5) ◽  
pp. 1019
Author(s):  
Jianhui Xu ◽  
Yi Zhao ◽  
Caige Sun ◽  
Hanbin Liang ◽  
Ji Yang ◽  
...  

This study explored the model of urban impervious surface (IS) density, land surface temperature (LST), and comprehensive ecological evaluation index (CEEI) from urban centers to suburbs. The interrelationships between these parameters in Guangzhou from 1987 to 2019 were analyzed using time-series Landsat-5 TM (Thematic Mapper), Landsat-8 OLI (Operational Land Imager), and TIRS (Thermal Infrared Sensor) images. The urban IS densities were calculated in concentric rings using time-series IS fractions, which were used to construct an inverse S-shaped urban IS density function to depict changes in urban form and the spatio-temporal dynamics of urban expansion from the urban center to the suburbs. The results indicated that Guangzhou experienced expansive urban growth, with the patterns of urban spatial structure changing from a single-center to a multi-center structure over the past 32 years. Next, the normalized LST and CEEI in each concentric ring were calculated, and their variation trends from the urban center to the suburbs were modeled using linear and nonlinear functions, respectively. The results showed that the normalized LST had a gradual decreasing trend from the urban center to the suburbs, while the CEEI showed a significant increasing trend. During the 32-year rapid urban development, the normalized LST difference between the urban center and suburbs increased gradually with time, and the CEEI significantly decreased. This indicated that rapid urbanization significantly expanded the impervious surface areas in Guangzhou, leading to an increase in the LST difference between urban centers and suburbs and a deterioration in ecological quality. Finally, the potential interrelationships among urban IS density, normalized LST, and CEEI were also explored using different models. This study revealed that rapid urbanization has produced geographical convergence between several ISs, which may increase the risk of the urban heat island effect and degradation of ecological quality.


Sign in / Sign up

Export Citation Format

Share Document