scholarly journals Structural, Morphological and Magnetic Properties of Fe60−xCox(Al2O3)40 Nanocomposite Coating Deposited by Thermal Spraying

Proceedings ◽  
2019 ◽  
Vol 26 (1) ◽  
pp. 14
Author(s):  
Younes ◽  
Dilmi ◽  
Bouamer

FeCo/Al2O3 nanoparticles thermal sprayed on a steel plate with different Co concentration from 0 to 20% by means of a thermal spraying process, Fe60−xCox(Al2O3)40 powder alloy was synthesized using planetary ball mill for different Co concentration at 20 h of milling. The aims of this work are to study the effect of Co concentration and milling time on the magnetic, structural behavior and mechanical properties of the FeCo/Al2O3 coating. Appearance of FeCo magnetic Solid solution phase after 20 h of milling, the crystallite sizes reduced from 18nm to 7nm and lattice strains increased from 0.36 to 0.56%, this variation are caused by the diffusion of Co atoms in iron lattice. For the coating, various phase of magnetic domains observed on surface by Atomic Force Microscopy (AFM), apparition the new phases, Al2FeO4 at 0%, CoAl2O4 at 5%, CoFe2O4 at 10% and CoFe at 20%. Saturation magnetization is max at 20 wt% of Ni and coercivity is min at 10 wt% of Co. Microhardeness and Young module were characterized by Nanoidentation techniques that shows an improvement in mechanical properties

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 652
Author(s):  
Divine Sebastian ◽  
Chun-Wei Yao ◽  
Lutfun Nipa ◽  
Ian Lian ◽  
Gary Twu

In this work, a mechanically durable anticorrosion superhydrophobic coating is developed using a nanocomposite coating solution composed of silica nanoparticles and epoxy resin. The nanocomposite coating developed was tested for its superhydrophobic behavior using goniometry; surface morphology using scanning electron microscopy and atomic force microscopy; elemental composition using energy dispersive X-ray spectroscopy; corrosion resistance using atomic force microscopy; and potentiodynamic polarization measurements. The nanocomposite coating possesses hierarchical micro/nanostructures, according to the scanning electron microscopy images, and the presence of such structures was further confirmed by the atomic force microscopy images. The developed nanocomposite coating was found to be highly superhydrophobic as well as corrosion resistant, according to the results from static contact angle measurement and potentiodynamic polarization measurement, respectively. The abrasion resistance and mechanical durability of the nanocomposite coating were studied by abrasion tests, and the mechanical properties such as reduced modulus and Berkovich hardness were evaluated with the aid of nanoindentation tests.


2016 ◽  
Vol 840 ◽  
pp. 281-286 ◽  
Author(s):  
Yusof Abdullah ◽  
Cik Rohaida Che Hak ◽  
Megat Harun Al Rashid Megat Ahmad ◽  
Nurul Fadzlin Hasbullah ◽  
Mohd Reusmaazran Yusof ◽  
...  

4H-SiC Schottky barrier diodes (SBDs) were irradiated to neutron fluence of 3.55 x1016 cm-2 and 6.6 x 1015 cm-2 (15,000 kGy) electrons respectively. In general, characterization of the irradiated samples show that the current characteristics of the diodes decreased. The performance of Schottky gate contact is less for electron irradiated sample compared to neutron irradiated sample. The d-spacing, crystallite sizes and lattice strains were calculated from X-ray diffraction (XRD) measurements. SiC Schottky interface damage and radiation defects, as observed in atomic force microscopy (AFM) topography and scanning electron microscope (SEM) morphology images is possibly the main reason for this reduction in performance.


2000 ◽  
Vol 39 (Part 1, No. 6B) ◽  
pp. 3711-3716 ◽  
Author(s):  
Hatsuki Shiga ◽  
Yukako Yamane ◽  
Etsuro Ito ◽  
Kazuhiro Abe ◽  
Kazushige Kawabata ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1661
Author(s):  
Katarzyna Adamiak ◽  
Katarzyna Lewandowska ◽  
Alina Sionkowska

Collagen films are widely used as adhesives in medicine and cosmetology. However, its properties require modification. In this work, the influence of salicin on the properties of collagen solution and films was studied. Collagen was extracted from silver carp skin. The rheological properties of collagen solutions with and without salicin were characterized by steady shear tests. Thin collagen films were prepared by solvent evaporation. The structure of films was researched using infrared spectroscopy. The surface properties of films were investigated using Atomic Force Microscopy (AFM). Mechanical properties were measured as well. It was found that the addition of salicin modified the roughness of collagen films and their mechanical and rheological properties. The above-mentioned parameters are very important in potential applications of collagen films containing salicin.


2018 ◽  
Vol 114 (3) ◽  
pp. 513a
Author(s):  
Yuri M. Efremov ◽  
Mirian Velay-Lizancos ◽  
Daniel M. Suter ◽  
Pablo D. Zavattieri ◽  
Arvind Raman

PLoS ONE ◽  
2012 ◽  
Vol 7 (1) ◽  
pp. e30204 ◽  
Author(s):  
David Martinez-Martin ◽  
Carolina Carrasco ◽  
Mercedes Hernando-Perez ◽  
Pedro J. de Pablo ◽  
Julio Gomez-Herrero ◽  
...  

2005 ◽  
Vol 502 ◽  
pp. 505-510 ◽  
Author(s):  
Masami Futamata ◽  
Xiaohui Gai ◽  
Toyokazu Mizumoto ◽  
Kimio Nakanishi

To fabricate thermal spraying coatings with good reproducibility, it is necessary to improve the process of the equalization of both thermal history and impacting behavior of the particles. In this study, the characteristics of the solution type plasma spraying using the hollow-cathode type torch are investigated. The physical and mechanical properties that are different from usual thermal spraying coatings are described. By using solutions including metal ingredients in a state of ion, colloid or sol, thinner coating that cannot be made by conventional plasma spraying methods is formed on various substrates. The coatings are uniform in appearance.


Sign in / Sign up

Export Citation Format

Share Document