scholarly journals Nature-Based Solutions in an Urban Perspective

Proceedings ◽  
2019 ◽  
Vol 30 (1) ◽  
pp. 3
Author(s):  
Sörensen

The traditional engineering approach to manage urban drainage is by combined or separated sewers. In urban catchments, drainage systems may include different types of storage and detention facilities to avoid flooding from heavy rainfall. However, during recent decades, alternative ways to manage floods have evolved since traditional methods often harm the riverine ecosystems by pollution and erosion and increase the flood risk in the downstream extent of a catchment. Green spaces are important in urban areas for many different reasons: recreation, maintenance of biodiversity, city structure, cultural identity, environmental quality of the urban area, and as biological solutions to technical problems in urban areas. However, plans for urban green spaces often do not take into consideration the multiple purposes of green spaces and the relation between urban green spaces and water is only to a limited degree mentioned and discussed in such plans. Densification has become a dominating urban planning strategy, as many cities strive to reduce their negative, environmental impact. As a consequence of urban densification, the need for solid strategies to preserve, build, develop and ideally simultaneously increase the quantity (area) and quality of green and blue spaces (vegetation and surface water) in urban areas in a multifunctional manner increases. The combination of climate change adaptation, densification, pollution, the call for more green spaces, and a need to restore aging sewers, leads to strong interest in retrofitting of urban areas with nature-based solutions (NBS). Incorporation of NBS into decision-making and ways to handle integrative and multi-criteria aspects in the legal and organisational system are still to a great extent not done. The current regime for stormwater management, through piped drainage, is dominating and many cities face a lack of green spaces. Introducing more nature-based solutions is faced with barriers that are largely socio-institutional rather than technical. In this keynote session such barriers, as well as drivers, for wide-spread implementation of NBS, as well as data management strategies to help the implementation, are discussed. Based on transition theory, socio-technical transition towards wide-spread implementation of such measures were examined through interviews with municipal and water utility officials. Legal, organisational and financial changes are suggested. This keynote session also discusses urban, pluvial flooding and if NBS can be used as a strategy for resilient flood risk management. Spatial analyses of flood claims from insurance companies and the water utility company of Malmö are used to study how NBS impact flood risk.

2021 ◽  
Vol 13 (9) ◽  
pp. 5071
Author(s):  
Beata Makowska

Intensive urban development has created a shortage of urban green areas. The need to economically plan and use urban green spaces has fueled the redefinition of public spaces and parks so as to provide the residents with both recreation and relaxation facilities, as well as a forum for contact with culture. This paper discusses the case of the Stavros Niarchos Foundation Cultural Center (SNFCC) in the Kallithea district on the outskirts of Athens, near the Mediterranean Sea. It fills a gap in the research on the aspects of the practical functioning of such facilities. The methodology used in the research included an analysis of the literature, the SNFCC’s reports, and an in situ survey. The cultural center hosts a number of events aimed at promoting Greece’s natural and cultural heritage. The paper includes a detailed analysis of the events organized by the SNFCC in the period 2017–2020 and their immense impact on residents. The aim of the study is to show that the creation of the SNFCC with the park areas has functioned as a factor contributing to the improvement of the quality of urban space and the quality of life of the city’s inhabitants. The paper’s conclusions indicate that the sustainable SNFCC project, which fulfils the urban ecology criteria, has been very well received by the visitors—citizens and tourists alike. A program-centered innovation introduced by the SN Park has added great value to their lives. The project contributes to economic and cultural growth, as well as the protection and promotion of heritage.


2021 ◽  
Vol 271 ◽  
pp. 116393
Author(s):  
Pablo Knobel ◽  
Roser Maneja ◽  
Xavier Bartoll ◽  
Lucia Alonso ◽  
Mariska Bauwelinck ◽  
...  

Author(s):  
Lael E Walsh ◽  
Bethan R Mead ◽  
Charlotte A Hardman ◽  
Daniel Evans ◽  
Lingxuan Liu ◽  
...  

Abstract As urban areas and land-use constraints grow, there is increasing interest in utilizing urban spaces for food production. Several studies have uncovered significant potential for urban growing to supplement production of fruit and vegetables, focusing on one or two cities as case studies, whilst others have assessed the global scale potential. Here, we provide a national-scale analysis of the horticultural production potential of urban green spaces, which is a relevant scale for agri-food and urban development policy making using Great Britain (GB) as a case study. Urban green spaces available for horticultural production across GB are identified and potential yields quantified based on three production options. The distribution of urban green spaces within 26 urban towns and cities across GB are then examined to understand the productive potential compared to their total extent and populations. Urban green spaces in GB, at their upper limit, have the capacity to support production that is 8x greater than current domestic production of fruit and vegetables. This amounts to 38% of current domestic production and imports combined, or >400% if exotic fruits and vegetables less suited to GB growing conditions are excluded. Most urban green spaces nationally are found to fall within a small number of categories, with private residential gardens and amenity spaces making up the majority of space. By examining towns and cities across GB in further detail, we find that the area of green space does not vary greatly between urban conurbations of different sizes, and all are found to have substantial potential to meet the dietary needs of the local urban population. This study highlights that national policies can be suitably developed to support urban agriculture and that making use of urban green spaces for food production could help to enhance the resilience of the national-scale food system to shocks in import pathways, or disruptions to domestic production and distribution.


2020 ◽  
Author(s):  
Ellen Hall ◽  
Victoria Bennett

Abstract Background: Despite the negative connotation of urban sprawl for bat populations, fragmented green spaces such as parks, cemeteries, and golf courses have the potential to provide necessary resources for bats. For example, water resources in these areas can include natural or semi-natural lakes, ponds, streams, and drainage ditches. Such water resources, however, are frequently ephemeral when subject to prolonged periods of high temperatures. We, therefore, hypothesize that bats will expand or shift their home ranges from these urban green spaces into the surrounding neighborhoods to access alternative resources, such as residential swimming pools. Methods: To explore whether bats expand their ranges from urban green spaces, we conducted a telemetry study in which we radio-tracked resident evening bats (Nycticeius humeralis) in a local park system during their summer activity period from 2017-2019 in Fort Worth, Texas, USA. From radio-tracking surveys, we measured home range size using a k-LoCoH method and the percentage of these home ranges that fell within the park system. We compared these variables using linear and non-linear regressions with temperature. Results: We successfully tracked a total of 30 bats over the 3-year period and found a positive correlation between home range size and temperature. Furthermore, we observed that home ranges increased 6 times in size when temperatures exceeded 30ºC. Conclusions: Our study indicates the importance of urban neighborhoods surrounding green spaces in providing alternative resources, such as water, for bats. If managed appropriately, these urban areas have the potential to act as urban oases for bat populations, which in turn can contribute to their conservation.


2015 ◽  
Vol 30 (4) ◽  
pp. 376-392 ◽  
Author(s):  
Andrej Christian Lindholst ◽  
Sidney George Sullivan ◽  
Cecil C. Konijnendijk van den Bosch ◽  
Hanna Fors

2021 ◽  
Vol 10 (10) ◽  
pp. 670
Author(s):  
Qiang Chen ◽  
Cuiping Zhong ◽  
Changfeng Jing ◽  
Yuanyuan Li ◽  
Beilei Cao ◽  
...  

In order to achieve the United Nations 2030 Sustainable Development Goals (SDGs) related to green spaces, monitoring dynamic urban green spaces (UGSs) in cities around the world is crucial. Continuous dynamic UGS mapping is challenged by large computation, time consumption, and energy consumption requirements. Therefore, a fast and automated workflow is needed to produce a high-precision UGS map. In this study, we proposed an automatic workflow to produce up-to-date UGS maps using Otsu’s algorithm, a Random Forest (RF) classifier, and the migrating training samples method in the Google Earth Engine (GEE) platform. We took the central urban area of Beijing, China, as the study area to validate this method, and we rapidly obtained an annual UGS map of the central urban area of Beijing from 2016 to 2020. The accuracy assessment results showed that the average overall accuracy (OA) and kappa coefficient (KC) were 96.47% and 94.25%, respectively. Additionally, we used six indicators to measure quality and temporal changes in the UGS spatial distribution between 2016 and 2020. In particular, we evaluated the quality of UGS using the urban greenness index (UGI) and Shannon’s diversity index (SHDI) at the pixel level. The experimental results indicate the following: (1) The UGSs in the center of Beijing increased by 48.62 km2 from 2016 to 2020, and the increase was mainly focused in Chaoyang, Fengtai, and Shijingshan Districts. (2) The average proportion of relatively high and above levels (UGI > 0.5) in six districts increased by 2.71% in the study area from 2016 to 2020, and this proportion peaked at 36.04% in 2018. However, our result revealed that the increase was non-linear during this assessment period. (3) Although there was no significant increase or decrease in SHDI values in the study area, the distribution of the SHDI displayed a noticeable fluctuation in the northwest, southwest, and northeast regions of the study area between 2016 and 2020. Furthermore, we discussed and analyzed the influence of population on the spatial distribution of UGSs. We found that three of the five cold spots were located in the east and southeast of Haidian District. Therefore, the proposed workflow could provide rapid mapping and dynamic evaluation of the quality of UGS.


Author(s):  
R. Figueiredo ◽  
A. B. Gonçalves ◽  
I. L. Ramos

The identification of service areas of urban green spaces and areas with lack of these is increasingly necessary within city planning and management, as it translates into important indicators for the assessment of quality of life. In this setting, it is important to evaluate the attractiveness and accessibility dynamics through a set of attributes, taking into account the local reality of the territory under study. This work presents an operational methodology associated with these dynamics in local urban green spaces, assisting in the planning and management of this type of facilities. The methodology is supported firstly on questionnaire surveys and then on network analysis, processing spatial data in a Geographic Information Systems (GIS) environment. In the case study, two local green spaces in Lisbon were selected, on a local perspective explorative approach. Through field data, it was possible to identify service areas for both spaces, and compare the results with references in the literature. It was also possible to recognise areas with lack of these spaces. The difficulty to evaluate the dynamics of real individuals in their choices of urban green spaces and the respective route is a major challenge to the application of the methodology. In this sense it becomes imperative to develop different instruments and adapt them to other types of urban green spaces.


Author(s):  
Eyasu markos woldesemayat

Addis Ababa, the capital of Ethiopia, is urbanizing rapidly in recent years mainly through the destruction of environmental resources. This study aimed at the dynamics of urban green spaces (UGS). Remote Sensing and Geographical Information System (GIS) was used to extract land use and land cover data. The Landscape Expansion Index (LEI) was employed to measure urban growth patterns. The result showed that a more noticeable growth was observed in the peri-urban zone (40.1km2 to 176.1km2), followed by the inner urban zone (from 67.1km2 to 105km2). The expansion in the urban core zone was marginal and followed a non-unidirectional trend i.e. increased in the first period (1989-1999) and second period (1999-2009) by (0.11% and 4.2%), while decreased in the third period (2009-2019) by 3.6%. The result for LEI dynamics showed that the city experienced a pronounced outlying growth (98%) pattern, while edge expansion and infilling growth were insignificant. Conversely, the UGS declined in the inner urban zone by (18.03%), (28.61%) and (18.97%) in the first, second, and third periods. Similarly, in the peri-urban zone, the UGS persistently declined by (11.5%), (17.1%) and, (28.03%). The directional analysis showed that urban areas significantly expanded in SEE, SSE, SSW, and NEE with a net increase of 5.35, 4.4 km, 2.83, and 2.3 km2/year, respectively. Conventional large-scale /citywide/ dynamics investigations are not robust enough to represent the actual magnitude and directions of change, while the zonal and directional study is more effective in characterizing the Spatio-temporal dynamics for better urban planning towards.


2021 ◽  
Vol 13 (19) ◽  
pp. 11054
Author(s):  
Claudia De Luca ◽  
Andrea Libetta ◽  
Elisa Conticelli ◽  
Simona Tondelli

In accordance with SDG N11.7, each city should work on providing “by 2030, universal access to safe, inclusive and accessible, green and public spaces, in particular for women and children, older persons and persons with disabilities”. This target became even more crucial during the COVID-19 pandemic restrictions. This paper presents and discuss a method for (i) assessing the current distribution and accessibility of urban green spaces (UGSs) in a city using hierarchical network distances; and (ii) quantifying the per capita values of accessible UGSs, also in light of the restrictions in place, namely social distancing during the COVID-19 pandemic. The methods have been tested in the city of Bologna, and the results highlight urban areas that suffer from a scarcity of accessible UGSs and identify potentially overcrowded UGSs, assessing residents’ pressure over diverse UGSs of the city in question. Based on our results, this work allows for the identification of priorities of intervention to overcome these issues, while also considering temporary solutions for facing the eventual scarce provision of UGSs and related health and wellbeing benefits in periods of movement restrictions.


Sign in / Sign up

Export Citation Format

Share Document