scholarly journals Development of Silicone Elastomer for Use in the Assessment of Padded Clothing in Rugby Union

Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 77
Author(s):  
Angus Hughes ◽  
Heather Driscoll ◽  
Matt Carré

Rugby Union is a collision sport, with both player to player and player to pitch impacts being frequent. Current test standards for padded clothing in rugby use impact surrogates, which may not accurately replicate the human response. Modern technologies use silicone elastomers to represent human soft tissue when testing padding, however many commercially available silicones do not match the load response seen by human tissue. This paper describes the fabrication and validation of a bespoke formulation of commercially available silicone elastomer and deadener concentrations that portray a similar load response to relaxed organic muscle tissue. The mechanical responses, both at quasi-static and dynamic strain rates, have been compared, with improved, more representative behaviour being presented. The validation of this silicone elastomer formulation is important in developing a more biofidelic impact surrogate for the assessment of padded clothing in rugby.

Author(s):  
Zhe Jia ◽  
Ben Guan ◽  
Yong Zang ◽  
Yuan Wang ◽  
Lei Mu

2020 ◽  
Vol 54 (30) ◽  
pp. 4807-4819 ◽  
Author(s):  
AR Shamaei-Kashani ◽  
MM Shokrieh

In the present research, effects of applying strain rate on the mechanical behavior of single-lap glass/CNF/epoxy composite bolted joints including, damage initiation bearing stress, 2% offset bearing strength, ultimate bearing strength, bearing chord stiffness, ultimate bearing strain, and energy absorption were studied. To this end, a comprehensive experimental program was conducted. The protruding head bolt was used, the clearance was considered to be near fit and a finger-tight bolt condition was applied to all joints. The dimensions of joints were chosen to promote the bearing failure mode based on the ASTM standard. Four types of single-lap bolted joints (SLJs) with lay-ups of [–45/0/45/90]s and [90/–452/45]s with and without CNFs were tested at strain rates in the range of 0.0048 s−1 to 0.89 s−1. Unlike the available experimental results, the results obtained by the present experiments showed that the strain rate has a significant effect on all the above-mentioned mechanical parameters of SLJs. Also, it was shown that employing CNFs improved the mechanical parameters of SLJs under quasi-static and dynamic strain rates.


2015 ◽  
Vol 782 ◽  
pp. 130-136 ◽  
Author(s):  
Ping Zhou ◽  
Wei Guo Guo ◽  
Hai Hui Wu

To explore the thermo-mechanical response of H96 brass alloy, the quasi-static (universal-testing machine) and dynamic (the split Hopkinson pressure bar apparatus) uniaxial compression experiments have been performed under the temperatures from 293 K to 873 K and the strain rates from 0.001 s-1 to 6000 s-1, and the strains over 60% are obtained. Results show that, H96 brass alloy has strong strain hardening behavior, and it becomes weaker with the increasing temperature. In addition, this alloy is sensitive to strain rates; and, it has temperature sensitivity, the dynamic strain aging occurs at the temperature of 473 K and a quasi-static strain rate of 0.001 s-1. Based on the thermal activation dislocation mechanism, paralleled with the experimental results, a plastic flow constitutive model with the physical conception is developed. The model is suitable to predict the plastic flow stress at different temperatures and strain rates. According to comparing results, the model predictions are in good agreement with the experimental results.


Author(s):  
Mohammad Hosseini Farid ◽  
Ashkan Eslaminejad ◽  
Mariusz Ziejewski ◽  
Ghodrat Karami

Traumatic brain injury (TBI) often happens when the brain tissue undergoes a high rate mechanical load. Although numerous research works have been carried out to study the mechanical characterization of brain matter under quasi-static (strain rate ≤ 100 S−1) loading but a limited amount of experimental studies are available for brain tissue behavior under dynamic strain rates (strain rate ≥ 100 S−1). In this paper, the results of a study on mechanical properties of ovine brain tissue under unconfined compression tests are to be presented. The samples were compressed under uniaxial strain rates of 0.0667, 3.33, 6.667, 33.33, 66.667 and 200 S−1. The brain tissue presents a stiffer response with increasing strain rate, showing a time-dependent behavior. So the hyperelastic-only models are not adequate to exhibit the brain viscoelasticity. Therefore, two hyper-viscoelastic constitutive equations based on power function model and Mooney-Rivlin energy function are applied to the results with quasi-static strain rate (≤ 100 S−1). Good agreement of experimental and theoretical has been achieved for results of the low strain rates. It is concluded that the obtained material parameters from quasi-static tests are not appropriate enough to fit the result with the high strain rate of 200 S−1. The study will further provide new insight into a better understanding of the rate-dependency behavior of the brain tissue under dynamic conditions. This is essential in the development of constitutive material characteristics for an efficient human brain finite element models to predict TBI under impact condition or high motion.


2003 ◽  
Vol 110 ◽  
pp. 397-404 ◽  
Author(s):  
R. Othman ◽  
M. N. Bissac ◽  
P. Collet ◽  
G. Gary
Keyword(s):  

2008 ◽  
Vol 22 (31n32) ◽  
pp. 5431-5437 ◽  
Author(s):  
W. G. GUO ◽  
C. QU ◽  
F. L. LIU

This paper is to understand and model the thermomechanical response of the rotary forged WHA, uniaxial compression and tension tests are performed on cylindrical samples, using a material testing machines and the split Hopkinson bar technique. True strains exceeding 40% are achieved in these tests over the range of strain rates from 0.001/s to about 7,000/s, and at initial temperatures from 77K to 1,073K. The results show: 1) the WHA displays a pronounced changing orientation due to mechanical processing, that is, the material is inhomogeneous along the section; 2) the dynamic strain aging occurs at temperatures over 700K and in a strain rate of 10-3 1/s; 3) failure strains decrease with increasing strain rate under uniaxial tension, it is about 1.2% at a strain rate of 1,000 1/s; and 4) flow stress of WHA strongly depends on temperatures and strain rates. Finally, based on the mechanism of dislocation motion, the parameters of a physically-based model are estimated by the experimental results. A good agreement between the modeling prediction and experiments was obtained.


Sign in / Sign up

Export Citation Format

Share Document