scholarly journals Cell Surface-Expressed GPI-Anchored Peptides from the CHR Domain of gp41 Are Potent Inhibitors of HIV-1 Fusion

Proceedings ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 70
Author(s):  
Aleksandra Maslennikova ◽  
Dmitriy Komkov ◽  
Anastasia Zotova ◽  
Dmitriy Mazurov

Current antiretroviral therapy efficiently suppresses viral replication but cannot eliminate latent HIV reservoirs. Moreover, the associated high costs, side effects, and drug resistance have stimulated a need for the development of alternative methods of HIV-1/AIDS treatment, such as peptide inhibitors or gene editing. Recently, we have developed Surface Oligopeptide knock-in for Rapid Target Selection (SORTS), a method for the rapid selection of CRISPR/Cas9 gene-edited cells via knock-in of the Flag and HA epitope tags embedded into the shortest GPI-protein, CD52. By targeting the capsid region of the HIV-1 genome, we demonstrate that SORTS can be applied in provirus eradication. However, the cells with inactivated provirus will be susceptible to HIV re-infection. We hypothesized that knocking in one of the peptides from the CHR-domain of gp41, which are known potent inhibitors of HIV-1 fusion, instead of the epitope tag, will provide “post-curable” HIV-1 resistance. While these peptides were extensively studied as soluble substances, their inhibitory effects on HIV after expression on cell surfaces via GPI-anchor are largely unknown. In this study, we established HEK293T/CD4/R5 and Raji/CD4/R5 HIV-1 permissive cell lines that stably expressed one of the gp41 peptides C34, MT-C34, MT-C34-R, and MT34-15D, or alfa-helix mimetics HP23L, p52, and MT-WQ-IDL. For cell surface delivery, the indicated peptides were embedded into the CD52 molecule, and upstream GFP was used to select transformed cells. Using a single-cycle replication assay with the inLuc reporter vector and different Envs, we demonstrated that C34-based GPI-anchored peptides inhibited both cell-free and cell-to-cell HIV-1 infection by at least two orders of magnitude. With the exception of HP23L, the alfa-helix mimetics were less potent inhibitors. Thus, peptides from gp41 associated with lipid rafts and exerted a strong inhibitory activity which can far exceed that determined for soluble peptides, but this should be tested further.

Proceedings ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 13
Author(s):  
Dmitriy Mazurov ◽  
Alexandra Maslennikova ◽  
Dmitriy Komkov ◽  
Anastasia Zotova

We have recently developed surface oligopeptide knock-in for rapid target selection (SORTS), a novel method to isolate mammalian cells with gene modifications using FACS-sorting. It relies on CRISPR/Cas9-mediated targeted knock-in of a very short promoterless expression construct (250 bp) comprising a Flag or HA epitope embedded into the smallest GPI-protein CD52, and a polyA signal from the beta-globin. CD52 efficiently delivers the epitope to the cell surface, where it serves as a marker for selection, while polyA terminates transcription and silences target gene expression. Primarily, SORTS was developed to knock out genes encoding intracellular or secreted proteins, which cannot be used as markers for selection of live cells. Using in-frame modification of SORTS, we demonstrated the possibility of HIV-1 provirus inactivation via sorting of GPI-tag positive cells. In order to make the “cured” cells resistant to a subsequent HIV-1 infection, the epitope tag in the CD52 molecule was substituted by one of the fusion inhibitor peptides from the CHR-domain of gp41. We selected a series of cell-surface-expressed, GPI-anchored, C34-based peptides that confer a strong cellular resistance to HIV-1 infection mediated by NL4-3, JRFL, or ZM153 Env. These findings together with a monoclonal antibody raised against the C34 peptide provide an opportunity to generate and select HIV-resistant lymphocytes for a therapeutic goal. SORTS was also adapted to engineer transgenic HIV-1 effector Т cells and to study cell-to-cell transmission. To facilitate transgenesis, we developed a knock-in strategy to express GPI-tag from the intronic region of the human PPP1R12C gene (AAVS1 locus) and delivered FRT sites of recombination into both alleles. In summary, SORTS is a novel instrument to isolate rare cells with precise genomic modifications with broad applications, including HIV biology. This work was supported by the Russian Science Foundation (grant 18-14-00333) and the Russian Foundation for Basic Research (grants 18-29-07052, 18-04-01016).


1998 ◽  
Vol 63 (4) ◽  
pp. 541-548 ◽  
Author(s):  
Jaroslav Litera ◽  
Jan Weber ◽  
Ivana Křížová ◽  
Iva Pichová ◽  
Jan Konvalinka ◽  
...  

Twelve pseudotetrapeptides, Boc-NHCH(CH2Ph)CH(OH)CH2CH(CH2Ph) CO-Xaa-Phe-NH2 9-11, were prepared by [(benzotriazol-1-yl)oxy]tris(dimethylamino)phosphonium hexafluorophosphate-mediated couplings of diastereoisomeric O-silylated (2R or 2S,4R or 4S,5S)-2-benzyl-5-(tert-butoxycarbonyl)amino-4-hydroxy-6-phenylhexanoic acids 1 with dipeptides H-Xaa-Phe-NH2 (Xaa = Gln, Glu(OBzl) or Ile) 3-5, followed by O-deprotection. Pseudotetrapeptides 9-11 were tested for inhibition of aspartic proteinases secreted by Candida albicans and C. tropicalis. The level of inhibition of both yeast proteinases was very low, contrasting with the nanomolar IC50 values obtained for inhibition of HIV-1 proteinase.


Author(s):  
Sahana Pai ◽  
Jayesh Mudgal ◽  
B. Venkatesh Kamath ◽  
K. Sreedhara Ranganath Pai

AbstractHuman immunodeficiency virus-1 (HIV-1) infection remains to be one of the major threats throughout the world. Many researchers are working in this area to find a cure for HIV-1. The group of the FDA approved drugs which are currently used against HIV-1 in the clinical practice include nucleoside reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), integrase inhibitors (InIs), and protease inhibitors (PIs). Fixed dose combinations (FDCs) of these drugs are available and are used as per the anti-retroviral therapy (ART) guidelines. Despite these, unfortunately, there is no cure for HIV1 infection to date. The present review is focused upon describing the importance of a post-transcriptional regulatory protein “Rev”, responsible for latent HIV-1 infection as a possible, and promising therapeutic target against HIV-1.


1993 ◽  
Vol 268 (7) ◽  
pp. 5279-5284
Author(s):  
B.S. Weeks ◽  
K. Desai ◽  
P.M. Loewenstein ◽  
M.E. Klotman ◽  
P.E. Klotman ◽  
...  

2009 ◽  
Vol 17 (22) ◽  
pp. 7635-7642 ◽  
Author(s):  
Michal Maes ◽  
Aviad Levin ◽  
Zvi Hayouka ◽  
Deborah E. Shalev ◽  
Abraham Loyter ◽  
...  

2015 ◽  
Vol 90 (6) ◽  
pp. 2928-2937 ◽  
Author(s):  
Ai-Ping Jiang ◽  
Jin-Feng Jiang ◽  
Ji-Fu Wei ◽  
Ming-Gao Guo ◽  
Yan Qin ◽  
...  

ABSTRACTThe gastrointestinal mucosa is the primary site where human immunodeficiency virus type 1 (HIV-1) invades, amplifies, and becomes persistently established, and cell-to-cell transmission of HIV-1 plays a pivotal role in mucosal viral dissemination. Mast cells are widely distributed in the gastrointestinal tract and are early targets for invasive pathogens, and they have been shown to have increased density in the genital mucosa in HIV-infected women. Intestinal mast cells express numerous pathogen-associated molecular patterns (PAMPs) and have been shown to combat various viral, parasitic, and bacterial infections. However, the role of mast cells in HIV-1 infection is poorly defined. In this study, we investigated their potential contributions to HIV-1 transmission. Mast cells isolated from gut mucosal tissues were found to express a variety of HIV-1 attachment factors (HAFs), such as DC-SIGN, heparan sulfate proteoglycan (HSPG), and α4β7 integrin, which mediate capture of HIV-1 on the cell surface. Intriguingly, following coculture with CD4+T cells, mast cell surface-bound viruses were efficiently transferred to target T cells. Prior blocking with anti-HAF antibody or mannan before coculture impaired viraltrans-infection. Cell-cell conjunctions formed between mast cells and T cells, to which viral particles were recruited, and these were required for efficient cell-to-cell HIV-1 transmission. Our results reveal a potential function of gut mucosal mast cells in HIV-1 dissemination in tissues. Strategies aimed at preventing viral capture and transfer mediated by mast cells could be beneficial in combating primary HIV-1 infection.IMPORTANCEIn this study, we demonstrate the role of human mast cells isolated from mucosal tissues in mediating HIV-1trans-infection of CD4+T cells. This finding facilitates our understanding of HIV-1 mucosal infection and will benefit the development of strategies to combat primary HIV-1 dissemination.


Sign in / Sign up

Export Citation Format

Share Document