scholarly journals Characterization of the Plant-Associated Bacterial Microbiota of the Mexican Medicinal Species Bouvardia ternifolia

Proceedings ◽  
2021 ◽  
Vol 66 (1) ◽  
pp. 34
Author(s):  
Loan Edel Villalobos-Flores ◽  
Samuel David Espinosa-Torres ◽  
Fernando Hernández-Quiroz ◽  
Alberto Piña-Escobedo ◽  
Yair Cruz-Narváez ◽  
...  

Though therapeutic compounds can be extracted directly from medicinal plant tissues; it is now known that many phytotherapeutic compounds are actually produced by associated microorganisms or due to their interaction with the plant. Bouvardia ternifolia is a medicinal plant that can be considered a potential source of therapeutic compounds, such as the antitumoral molecule bouvardin. We characterized the endophytic, endophytic+epiphyte and soil bacterial microbiota in the flower, leaves, stems and roots in specimens of this plant through 16S rDNA sequencing. We found that Proteobacteria followed by Actinobacteria were the most abundant bacteria phyla in this plant. On the other hand, the most representative genera living endophytically were Propionibacterium, Paraccocus, Lactobacillus, Kaistobacter, Methylobacterium and Erwinia. This study provides evidence of the composition and diversity of the bacterial communities present in soil and tissues of B. ternifolia which can be considered for subsequent analysis and understanding of the therapeutic compounds that give this species its medicinal properties.

2020 ◽  
Vol 222 ◽  
pp. 02050
Author(s):  
Marat Lutfulin ◽  
Darya Zaripova ◽  
Oksana Moiseeva ◽  
Semen Vologin ◽  
Ayslu Mardanova

Identification of patterns of formation of bacterial communities of the rhizosphere and rhizoplane of potato (Solanum tuberosum L.), the most important agricultural crop, is necessary for the introduction and maintenance of sustainable organic farming. The purpose of this work was the study of the biodiversity of the bacterial microbiota of the rhizosphere and rhizoplane of Early Zhukovsky potato, cultivated on gray forest soils. Comparative analysis based on sequencing of the 16S R RNA gene showed a significant difference in the representation of different groups of bacteria in these potato root compartments. Thus, the proportions of the dominant bacteria in the rhizosphere and rhizoplane of the Proteobacteria phylum reach 47.66% ± 7.22 % and 86.35 % ± 0.53%, respectively (P < 0.05). In contrast, the representation of phylum Bacteroidetes and Firmicutes in the rhizosphere is significantly higher and reaches 41.45 % ± 10.42% and 6.49 % ± 3.23%, respectively, compared to the rhizoplane (7.84 % ± 1.24 % and 0.43 % ± 0.48 %, (P < 0.05). At the same time, Actinobacteria phylum bacteria are present in both compartments in approximately equal amounts (4.40 % ± 1.81% in the rhizosphere and 5.37 % ± 1.42% in the rhizoplane). Thus, it was found that potato forms different bacterial communities in the rhizosphere and rhizoplane in quantitative proportions, which is probably determined by the functional role of these microorganisms in the plant physiology.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jie Chen ◽  
Na Li ◽  
Jiayu Chang ◽  
Kaida Ren ◽  
Jiangtao Zhou ◽  
...  

Plant secondary metabolites (SMs) play a crucial role in plant defense against pathogens and adaptation to environmental stresses, some of which are produced from medicinal plants and are the material basis of clinical efficacy and vital indicators for quality evaluation of corresponding medicinal materials. The influence of plant microbiota on plant nutrient uptake, production, and stress tolerance has been revealed, but the associations between plant microbiota and the accumulation of SMs in medicinal plants remain largely unknown. Plant SMs can vary among individuals, which could be partly ascribed to the shift in microbial community associated with the plant host. In the present study, we sampled fine roots and rhizosphere soils of Sophora flavescens grown in four well-separated cities/counties in China and determined the taxonomic composition of rhizosphere bacterial communities using Illumina 16S amplicon sequencing. In addition, the association of the rhizosphere bacterial microbiota with the accumulation of alkaloids in the roots of S. flavescens was analyzed. The results showed that S. flavescens hosted distinct bacterial communities in the rhizosphere across geographic locations and plant ages, also indicating that geographic location was a larger source of variation than plant age. Moreover, redundancy analysis revealed that spatial, climatic (mean annual temperature and precipitation), and edaphic factors (pH and available N and P) were the key drivers that shape the rhizosphere bacterial communities. Furthermore, the results of the Mantel test demonstrated that the rhizosphere bacterial microbiota was remarkably correlated with the contents of oxymatrine, sophoridine, and matrine + oxymatrine in roots. Specific taxa belonging to Actinobacteria and Chloroflexi were identified as potential beneficial bacteria associated with the total accumulation of matrine and oxymatrine by a random forest machine learning algorithm. Finally, the structural equation modeling indicated that the Actinobacteria phylum had a direct effect on the total accumulation of matrine and oxymatrine. The present study addresses the association between the rhizosphere bacterial communities and the accumulation of alkaloids in the medicinal plant S. flavescens. Our findings may provide a basis for the quality improvement and sustainable utilization of this medicinal plant thorough rhizosphere microbiota manipulation.


2020 ◽  
Author(s):  
Jaime García-Mena ◽  
Loan Villalobos-Flores ◽  
Samuel Espinosa-Torres ◽  
Fernando Hernández-Quiroz ◽  
Alberto Piña-Escobedo ◽  
...  

2019 ◽  
Vol 95 (10) ◽  
Author(s):  
Lindsay L Freed ◽  
Cole Easson ◽  
Lydia J Baker ◽  
Danté Fenolio ◽  
Tracey T Sutton ◽  
...  

ABSTRACT The interdependence of diverse organisms through symbiosis reaches even the deepest parts of the oceans. As part of the DEEPEND project (deependconsortium.org) research on deep Gulf of Mexico biodiversity, we profiled the bacterial communities (‘microbiomes’) and luminous symbionts of 36 specimens of adult and larval deep-sea anglerfishes of the suborder Ceratioidei using 16S rDNA. Transmission electron microscopy was used to characterize the location of symbionts in adult light organs (esca). Whole larval microbiomes, and adult skin and gut microbiomes, were dominated by bacteria in the genera Moritella and Pseudoalteromonas. 16S rDNA sequencing results from adult fishes corroborate the previously published identity of ceratioid bioluminescent symbionts and support the findings that these symbionts do not consistently exhibit host specificity at the host family level. Bioluminescent symbiont amplicon sequence variants were absent from larval ceratioid samples, but were found at all depths in the seawater, with a highest abundance found at mesopelagic depths. As adults spend the majority of their lives in the meso- and bathypelagic zones, the trend in symbiont abundance is consistent with their life history. These findings support the hypothesis that bioluminescent symbionts are not present throughout host development, and that ceratioids acquire their bioluminescent symbionts from the environment.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
LF de Almeida Ribeiro da Silva ◽  
N dos Santos Moreira ◽  
LB dos Santos Nascimento ◽  
MV Leal-Costa ◽  
E Schwartz Tavares
Keyword(s):  

LWT ◽  
2021 ◽  
Vol 147 ◽  
pp. 111579
Author(s):  
Creciana M. Endres ◽  
Ícaro Maia S. Castro ◽  
Laura D. Trevisol ◽  
Juliana M. Severo ◽  
Michele B. Mann ◽  
...  

2021 ◽  
Vol 9 (3) ◽  
pp. 659
Author(s):  
Elias Asimakis ◽  
Panagiota Stathopoulou ◽  
Apostolis Sapounas ◽  
Kanjana Khaeso ◽  
Costas Batargias ◽  
...  

Various factors, including the insect host, diet, and surrounding ecosystem can shape the structure of the bacterial communities of insects. We have employed next generation, high-throughput sequencing of the 16S rRNA to characterize the bacteriome of wild Zeugodacus (Bactrocera) cucurbitae (Coquillett) flies from three regions of Bangladesh. The tested populations developed distinct bacterial communities with differences in bacterial composition, suggesting that geography has an impact on the fly bacteriome. The dominant bacteria belonged to the families Enterobacteriaceae, Dysgomonadaceae and Orbaceae, with the genera Dysgonomonas, Orbus and Citrobacter showing the highest relative abundance across populations. Network analysis indicated variable interactions between operational taxonomic units (OTUs), with cases of mutual exclusion and copresence. Certain bacterial genera with high relative abundance were also characterized by a high degree of interactions. Interestingly, genera with a low relative abundance like Shimwellia, Gilliamella, and Chishuiella were among those that showed abundant interactions, suggesting that they are also important components of the bacterial community. Such knowledge could help us identify ideal wild populations for domestication in the context of the sterile insect technique or similar biotechnological methods. Further characterization of this bacterial diversity with transcriptomic and metabolic approaches, could also reveal their specific role in Z. cucurbitae physiology.


Sign in / Sign up

Export Citation Format

Share Document