scholarly journals Visible Light Activated Room Temperature Gas Sensors Based on CaFe2O4 Nanopowders

Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 834 ◽  
Author(s):  
Qomaruddin ◽  
Cristian Fàbrega ◽  
Andreas Waag ◽  
Andris Šutka ◽  
Olga Casals ◽  
...  

Gas sensors based on CaFe2O4 nanopowders, which are p–type metal oxide semiconductor (MOX), have been fabricated and assessed for ethanol gas monitoring under visible light activation at room temperature. Regardless of their inferior sensitivity compared to thermally activated counterparts, the developed sensors have shown responsive sensing behavior towards ethanol vapors confirming the ability of using visible light for sensor activation. LEDs with different wavelengths (i.e., 465–590 nm) were employed. The highest sensitivity (3.7%) was reached using green LED activation that corresponds to the band gap of CaFe2O4.

RSC Advances ◽  
2017 ◽  
Vol 7 (63) ◽  
pp. 39859-39868 ◽  
Author(s):  
Shaofeng Shao ◽  
Yunyun Chen ◽  
Shenbei Huang ◽  
Fan Jiang ◽  
Yunfei Wang ◽  
...  

Pt/GQDs/TiO2 nanocomposite thin film-based gas sensors show tunable VOC sensing behaviour at room temperature under visible-light activation.


2016 ◽  
Vol 618 ◽  
pp. 253-262 ◽  
Author(s):  
A.S. Chizhov ◽  
M.N. Rumyantseva ◽  
R.B. Vasiliev ◽  
D.G. Filatova ◽  
K.A. Drozdov ◽  
...  

Author(s):  
Hongping Liang ◽  
Lanpeng Guo ◽  
Nengjie Cao ◽  
huiyun Hu ◽  
Hao Li ◽  
...  

Implementing sensitive and fast ppb-level formaldehyde sensing at room temperature is still extremely demanded for practical indoor air quality monitoring. Herein, we developed a visible-light sensitive and dipole modified graphene-based...


2021 ◽  
Vol 8 (3) ◽  
pp. 2170012
Author(s):  
Donghwi Cho ◽  
Jun Min Suh ◽  
Sang‐Hyeon Nam ◽  
Seo Yun Park ◽  
Minsu Park ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 892
Author(s):  
Artem Chizhov ◽  
Marina Rumyantseva ◽  
Alexander Gaskov

The review deals with issues related to the principle of operation of resistive semiconductor gas sensors and the use of light activation instead of thermal heating when detecting gases. Information on the photoelectric and optical properties of nanocrystalline oxides SnO2, ZnO, In2O3, and WO3, which are the most widely used sensitive materials for semiconductor gas sensors, is presented. The activation of the gas sensitivity of semiconductor materials by both UV and visible light is considered. When activated by UV light, the typical approaches for creating materials are (i) the use of individual metal oxides, (ii) chemical modification with nanoparticles of noble metals and their oxides, (iii) and the creation of nanocomposite materials based on metal oxides. In the case of visible light activation, the approaches used to enhance the photo- and gas sensitivity of wide-gap metal oxides are (i) doping; (ii) spectral sensitization using dyes, narrow-gap semiconductor particles, and quantum dots; and (iii) addition of plasmon nanoparticles. Next, approaches to the description of the mechanism of the sensor response of semiconductor sensors under the action of light are considered.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2103 ◽  
Author(s):  
Tae-Hee Han ◽  
So-Young Bak ◽  
Sangwoo Kim ◽  
Se Hyeong Lee ◽  
Ye-Ji Han ◽  
...  

This paper introduces a method for improving the sensitivity to NO2 gas of a p-type metal oxide semiconductor gas sensor. The gas sensor was fabricated using CuO nanowires (NWs) grown through thermal oxidation and decorated with ZnO nanoparticles (NPs) using a sol-gel method. The CuO gas sensor with a ZnO heterojunction exhibited better sensitivity to NO2 gas than the pristine CuO gas sensor. The heterojunction in CuO/ZnO gas sensors caused a decrease in the width of the hole accumulation layer (HAL) and an increase in the initial resistance. The possibility to influence the width of the HAL helped improve the NO2 sensing characteristics of the gas sensor. The growth morphology, atomic composition, and crystal structure of the gas sensors were analyzed using field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy, and X-ray diffraction, respectively.


2016 ◽  
Vol 128 (45) ◽  
pp. 14291-14295 ◽  
Author(s):  
Fabio Lima ◽  
Mikhail A. Kabeshov ◽  
Duc N. Tran ◽  
Claudio Battilocchio ◽  
Joerg Sedelmeier ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 440
Author(s):  
Daniel Garcia-Osorio ◽  
Pilar Hidalgo-Falla ◽  
Henrique E. M. Peres ◽  
Josue M. Gonçalves ◽  
Koiti Araki ◽  
...  

Gas sensors are fundamental for continuous online monitoring of volatile organic compounds. Gas sensors based on semiconductor materials have demonstrated to be highly competitive, but are generally made of expensive materials and operate at high temperatures, which are drawbacks of these technologies. Herein is described a novel ethanol sensor for room temperature (25 °C) measurements based on hematite (α‑Fe2O3)/silver nanoparticles. The AgNPs were shown to increase the oxide semiconductor charge carrier density, but especially to enhance the ethanol adsorption rate boosting the selectivity and sensitivity, thus allowing quantification of ethanol vapor in 2–35 mg L−1 range with an excellent linear relationship. In addition, the α-Fe2O3/Ag 3.0 wt% nanocomposite is cheap, and easy to make and process, imparting high perspectives for real applications in breath analyzers and/or sensors in food and beverage industries. This work contributes to the advance of gas sensing at ambient temperature as a competitive alternative for quantification of conventional volatile organic compounds.


Sign in / Sign up

Export Citation Format

Share Document