scholarly journals Torrefaction of Short Rotation Coppice of Poplar under Oxidative and Non-Oxidative Atmospheres

Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1479 ◽  
Author(s):  
Ana Álvarez ◽  
Gemma Gutiérrez ◽  
María Matos ◽  
Consuelo Pizarro ◽  
Julio L. Bueno

Torrefaction improves some of the poorest characteristics of biomass such as hygroscopicity, low energy density, or poor grindability which may cause some problems during its handling, storage and combustion. The aim of this work is to apply the torrefaction process to a Short Rotation Coppice of Poplar (SRCP) and characterize the new fuel. Therefore, both non-oxidative and oxidative torrefaction of SRCP were conducted in a tube furnace reactor within the range 200–240 °C and the torrefied biomass was fully characterize, i.e., proximate, ultimate, compositional and heating value analysis as well as wettability studies. In addition, Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS) was performed at optimal torrefaction temperature. Torrefaction kinetics were obtained using a thermogravimetric analyzer at optimal torrefaction temperature. Minimum mass and energy yields were found to be respectively 85.0% and 87.4% for oxidative torrefaction and 87.5% and 94.1% for non-oxidative option. Moisture was reduced from 6.97% to 4.8% and 4.4% for oxidative and non-oxidative torrefaction, respectively. Wettability studies carried out show an increase in hydrophobic behavior. Lignin was affected by torrefaction since decomposition products from guaiacyl (G) and syringyl (S) units were released during Py-GC/MS experiments. The reaction orders were 1.92 and 1.82 for oxidative and non-oxidative torrefaction, respectively and kinetic constant values were 5.99·× 10−5 and 2.98·× 10−5 s−1.

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8229
Author(s):  
Sebastian Paczkowski ◽  
Victoria Knappe ◽  
Marta Paczkowska ◽  
Luis Alonzo Diaz Robles ◽  
Dirk Jaeger ◽  
...  

The worldwide transformation from fossil fuels to sustainable energy sources will increase the demand for biomass. However, the ash content of many available biomass sources exceeds the limits of national standards. In this study, short-rotation coppice willow biomass was hydrothermally treated at 150, 170 and 185 °C. The higher heating value increased by 2.6% from x¯ = 19,279 J × g−1 to x¯ = 19,793 J × g−1 at 185 °C treatment temperature. The mean ash content was reduced by 53% from x¯ = 1.97% to x¯ = 0.93% at 170 °C treatment temperature, which was below the limit for category TW1b of the European pellet standard for thermally treated biomass. The nitrogen, sulfur and cadmium concentrations were reduced below the limits for category TW1b of the European biomass pellet standard (N: from 0.52% to 0.34%, limit at 0.5%; S: from 0.051% to 0.024%, limit at 0.04%; Cd: from 0.83 mg × kg−1 to 0.37 mg × kg−1, limit at 0.5 mg × kg−1). The highest reduction rates were sampled for phosphor (80–84%), potassium (78–90%), chlorine (96–98%) and lithium (96–98%). The reduction behavior of the elements is discussed according to the chemical processes at the onset of hydrothermal carbonization. The results of this study show that HTT has the potential to expand the availability of biomass for the increasing worldwide demand in the future.


2015 ◽  
Vol 768 ◽  
pp. 484-495 ◽  
Author(s):  
Si Jiang Xiong ◽  
Ren Zhong Pang ◽  
Jian Kun Zhuo ◽  
Qiang Yao

The nitrogen conversion with attention to the intermediates and NOx precursors has been investigated during the primary pyrolysis of sewage sludge by using Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and thermogravimetric analyzer (TGA) coupled with Fourier transform infrared spectrometry (FTIR). The results indicated that 75.4% of total nitrogen exists in the forms of protein in the sewage sludge. Amine compounds and nitrogen heterocyclics were found to be the main nitrogenated intermediates during the pyrolysis process in the temperature range of 250-400 °C. As the dominant nitrogenated compounds, the relative proportions of amine compounds were above 52% in all cases. And since the decomposition of sewage sludge was promoted by high temperature, the relative proportion of amine compounds increased by 24.6% when the temperature raised from 300 to 400 °C. Moreover, the generation of NH3 at 250 oC was mainly derived from the decomposition of ammonium salt, while the deamination of amine compounds led to a significant increase of NH3 at 300 °C.


Author(s):  
Zoltán Sebestyén ◽  
Marianne Blazsó ◽  
Emma Jakab ◽  
Norbert Miskolczi ◽  
János Bozi ◽  
...  

AbstractThe effects of various catalysts on the composition of volatile pyrolysis products of a plastic waste and biomass mixture (1:1) were studied, by pyrolyzing the mixture sample using slow and fast heating rate. Various zeolite catalysts (β-and Y-zeolites, ZSM-5 and FCC) and nickel-molybdenum catalyst on alumina support were applied to find suitable catalysts for upgrading the quality of the thermal decomposition products of the waste mixture. A sample to catalyst ratio of 2:1 was used in the experiments. The rate of evolution of the decomposition products under slow pyrolysis was measured by thermogravimetry/mass spectrometry (TG/MS). The composition of the pyrolyzates was analyzed in detail by pyrolysis–gas chromatography/mass spectrometry (Py-GC/MS) method. The influence of all applied catalysts was more pronounced on the plastic content of the sample than on biomass. The pyrolysis experiments revealed that the catalysts promoted the cracking reactions of the evolved hydrocarbons; furthermore, the formation of aromatic products was enhanced remarkably in the presence of all zeolite catalysts. Beta-zeolite and ZSM-5 catalysts were found the most effective in cracking hydrocarbons to gaseous products and in aromatization, while the highest CO2 formation was obtained by FCC from the biomass part of the studied waste mixture. NiMo catalyst promoted the H2 production from the plastic part; furthermore, slight aromatization and cracking effects were also observed.


Author(s):  
Ashok Patel ◽  
◽  
Basant Agrawal ◽  
B R Rawal ◽  
◽  
...  

In this study, temperature studies were studied on the production of a product from selected eucalyptus leaving samples. The bio-diesel yield from these samples was further determined using non-model methods and analytical pyrolysis-gas chromatography / mass spectrometry (Py-GC / MS). The fresh eucalyptus leaves were obtained from nearby forest of Godhra (Gujarat), India. Results of the Proximate analysis of eucalyptus leaves powder sample study shows that volatile matter, fixed carbon, ash content and moisture content are 61.70 %, 26.37%, 8.36 % and 3.57%, The results of the basic analysis indicate that the carbon, hydrogen, nitrogen, oxygen, and sulfur content is 89.17%, 7.36%, 1.01%, 1.98% and 0.26%, respectively. The higher heating value (HHV) of the biodiesel obtained from the biomass samples is 32.81 MJ/kg. Chemical composition analysis of Eucalyptus Biodiesel carried out and compared with standards. The study revealed that pyro-fuel is not only used as fuel but also can be purified and used as a commodity in the chemical and processing industries.


2020 ◽  
Vol 24 (3 Part A) ◽  
pp. 1697-1703
Author(s):  
Huiling Chen ◽  
Shuaiwei Dong ◽  
Zhiyong Sun ◽  
Yaoming Wang ◽  
Xuefeng Luo ◽  
...  

In recent years, more and more attention has been paid to bio-energy. People are eager to find new substances from sustainable forest products for energy research. As an important forest resource, Sambucus williamsii Hance has gradually attracted people?s attention. Therefore, in order to explore a new way of comprehensive utilization of Sambucus williamsii Hance, the root samples of Sambucus williamsii Hance were collected and extracted with ethanol, benzene/ethanol and methanol, respectively. Fourier transform infrared spectroscopy (FT-IR), thermogravimetry (TGA) and pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) were used to detect the treated samples, and various substances in Sambucus williamsii Hance root were studied in depth. The results show that the thermal decomposition products of raw material powders and extracts contain many chemical substances. Such as (1R) - (-) ?Myrtenal, D-Mannose, Furfural, O-Xylene, Phenol, 2,6-dimethyl-. These substances have broad application prospects in chemical industry, bio-medicine, food additives and other fields, thus providing a theoretical basis for the rational use of Sambucus williamsii Hance.


Author(s):  
Emma Jakab ◽  
Zoltán Sebestyén ◽  
Bence Babinszki ◽  
Eszter Barta-Rajnai ◽  
Zsuzsanna Czégény ◽  
...  

SummaryThe thermo-oxidative decomposition of lovage (Levisticum officinale) and davana (Artemisia pallens) essential oils has been studied by pyrolysis-gas chromatography/mass spectrometry in 9% oxygen and 91% nitrogen atmosphere at 300 °C to simulate low-temperature tobacco heating conditions. Both lovage and davana oils contain numerous chemical substances; the main components of both oils are various oxygen-containing compounds. Isobenzofuranones are the most important constituents of lovage oil, and their relative intensity changed significantly during oxidative pyrolysis. (Z)-ligustilide underwent two kinds of decomposition reactions: an aromatization reaction resulting in the formation of butylidenephthalide and the scission of the lactone ring with the elimination of carbon dioxide or carbon monoxide. Davanone is the main component of davana oil, which did not decompose considerably during low-temperature oxidative pyrolysis. However, the relative yield of the second most intensive component, bicyclogermacrene, reduced markedly due to bond rearrangement reactions. Davana ether underwent oxidation reactions leading to the formation of various furanic compounds. The changes in the composition of both essential oils could be interpreted in terms of bond splitting, intramolecular rearrangement mechanisms and oxidation reactions of several constituents during low-temperature oxidative pyrolysis. The applied thermo-oxidative method was found to be suitable to study the stability of the essential oils and monitor the decomposition products under simulated tobacco heating conditions. In spite of the complicated composition of the essential oils, no evidence for interaction between the oil components was found. [Beitr. Tabakforsch. Int. 29 (2020) 27–43]


Sign in / Sign up

Export Citation Format

Share Document