scholarly journals ELEMENTAL COMPOSITION OF BIODIESEL PRODUCED BY FAST PYROLYSIS OF EUCALYPTUS LEAVES

Author(s):  
Ashok Patel ◽  
◽  
Basant Agrawal ◽  
B R Rawal ◽  
◽  
...  

In this study, temperature studies were studied on the production of a product from selected eucalyptus leaving samples. The bio-diesel yield from these samples was further determined using non-model methods and analytical pyrolysis-gas chromatography / mass spectrometry (Py-GC / MS). The fresh eucalyptus leaves were obtained from nearby forest of Godhra (Gujarat), India. Results of the Proximate analysis of eucalyptus leaves powder sample study shows that volatile matter, fixed carbon, ash content and moisture content are 61.70 %, 26.37%, 8.36 % and 3.57%, The results of the basic analysis indicate that the carbon, hydrogen, nitrogen, oxygen, and sulfur content is 89.17%, 7.36%, 1.01%, 1.98% and 0.26%, respectively. The higher heating value (HHV) of the biodiesel obtained from the biomass samples is 32.81 MJ/kg. Chemical composition analysis of Eucalyptus Biodiesel carried out and compared with standards. The study revealed that pyro-fuel is not only used as fuel but also can be purified and used as a commodity in the chemical and processing industries.

2017 ◽  
Vol 25 (5) ◽  
pp. 301-310 ◽  
Author(s):  
Jetsada Posom ◽  
Panmanas Sirisomboon

This research aimed to determine the higher heating value, volatile matter, fixed carbon and ash content of ground bamboo using Fourier transform near infrared spectroscopy as an alternative to bomb calorimetry and thermogravimetry. Bamboo culms used in this study had circumferences ranging from 16 to 40 cm. Model development was performed using partial least squares regression. The higher heating value, volatile matter, fixed carbon and ash content were predicted with coefficients of determination (r2) of 0.92, 0.82, 0.85 and 0.51; root mean square error of prediction (RMSEP) of 122 J g−1, 1.15%, 1.00% and 0.77%; ratio of the standard deviation to standard error of validation (RPD) of 3.66, 2.55, 2.62 and 1.44; and bias of 14.4 J g−1, −0.43%, 0.03% and −0.11%, respectively. This report shows that near infrared spectroscopy is quite successful in predicting the higher heating value, and is usable with screening for the determination of fixed carbon and volatile matter. For ash content, the method is not recommended. The models should be able to predict the properties of bamboo samples which are suitable for achieving higher efficiency for the biomass conversion process.


Konversi ◽  
2015 ◽  
Vol 4 (2) ◽  
pp. 16
Author(s):  
Yuli Ristianingsih ◽  
Ayuning Ulfa ◽  
Rachmi Syafitri K.S

Abstrak-Tandan Kosong Kelapa Sawit merupakan limbah padat hasil produksi Crude Palm Oil (CPO). Setiap 1(satu) ton tandan buah segar dihasilkan 23% limbah padat. Limbah padat ini dapat di konversi menjadi bahan bakar pengganti minyak yaitu briket. Briket bioarang adalah bahan bakar padat yang dapat digunakan sebagai bahan bakar alternatif pengganti bahan bakar yang berasal dari fosil seperti minyak dan gas. Penelitian ini bertujuan untuk mengetahui pengaruh suhu pirolisis terhadap yield bioarang yang dihasilkan dan mengetahui pengaruh konsentrasi perekat kanji (5% w/w, 10% w/w, 15% w/w) terhadap karakteristik briket hasil penelitian (kadar air, volatile matter, kadar abu, fixed carbon, nilai kalor dan laju pembakaran). Penelitian dilakukan dengan metode pirolisis yaitu proses pembakaran bahan baku dalam reaktor pirolisis dengan menggunakan suhu yang tinggi dan tanpa atau dengan sedikit oksigen. Pirolisis dilakukan selama 2,5 jam dengan variasi suhu yaitu 350°C, 400°C, 450°C dan 500°C. Arang yang dihasilkan dicampur dengan perekat sesuai variasi dan dicetak menjadi briket. Briket kemudian dianalisa kadar air, kadar abu, kadar karbon, kadar zat terbang, nilai kalor dan laju pembakaran. Briket dengan yield tertinggi terdapat pada suhu 350°C sebesar 51,53% dan yield terendah pada suhu 500°C sebesar 26,03%. Briket hasil penelitian ini telah memenuhi standar mutu briket sebagai bahan bakar dilihat dari nilai kalor. Komposisi optimal antara perekat kanji dan arang TKKS hasil pirolisis yaitu pada 5%:95% yang menghasilkan nilai kalor terbesar yaitu 6748,15kal/g.  Kata kunci : Briket Bioarang, Pirolisis, Tandan Kosong Kelapa Sawit                Abstract-Palm Oil Empty Fruit Bunches are solid waste from Crude Palm Oil (CPO industry). For 1 ton of fresh fruit bunches produced 23% of solid waste. This solid waste can be converted into alternative energy that called briquettes. Briquettes are solid fuel that can be used as an alternative fuel replacement for fossil fuels such as oil and gas. This study aims to determine the effect of temperature on the yield generated briquettes and the effect of stach adhesive concentration (5, 10 and 15% wt) to briquettes characteristics (moisture content, volatile matter, ash content, fixed carbon, calorific value and the rate of combustion). In this reseacrh, two kilograms of palm oil empty fruit bunches was burned using pyrolisis reactor at different temperatur (350, 400, 450 and 5000C) for 2.5 hour. Charcoal produced was mixed with an adhesive in accordance variations and molded into briquettes. Briquettes then analyzed the water content, ash content, carbon content, volatile matter content, heating value and rate of combustion. The maximum yield of briquettes which was obtained in this research is 51.53% at temperature 3500C and the lowest yield at temperature of 500 ° C by 26.03%. Briquettes results of this study have met the quality standards of fuel briquettes as seen from the heating value. Optimal adhesive composition between starch and charcoal TKKS is 5%: 95% that generates highest calorific value about 6748.15kal/ g. Keywords: Briquette Bioarang, Pyrolysis, oil palm empty bunches


2015 ◽  
Vol 10 (1) ◽  
pp. 343-349 ◽  
Author(s):  
Dobariya Umesh ◽  
P Sarsavadiya ◽  
Krishna Vaja ◽  
Khardiwar Mahadeo

The study was undertaken to investigate the properties of cotton stalk fuel from the agricultural residues. The whole cotton stalk plant is converted into shredded material with the help of cotton stalk shredder. The capacity of cotton stalk shredder machine is 218 kg/h. The proximate analysis of the shredded cotton stalk in terms of bulk density 34.92 kg / m3 moisture content 13.63 %, volatile matter 74.52 %, ash content (4.95 %, fixed carbon 20.53 % and calorific value of cotton stalk biomass (3827 cal/g) respectively. were showed that agricultural residues are the most potential and their quantitative availability, Since the aim by using shredded cotton stalk as feed stock for energy conversion process of the developed gasifier.


2013 ◽  
Vol 39 (2) ◽  
pp. 141-150 ◽  
Author(s):  
Michał Wichliński ◽  
Rafał Kobyłecki ◽  
Zbigniew Bis

Abstract This paper presents the results of the investigation associated with the determination of mercury content in Polish hard coal and lignite samples. Those coals are major fuels used for electricity generation in Poland. The results indicated that the average content of mercury in the coal samples was roughly about 100 ng/g. Apart from the determination of the mercury contents a detailed ultimate and proximate analysis of the coal samples was also carried out. The relationships between the mercury content and ash, as well as fixed carbon, volatile matter, sulfur, and high heating value of the coal samples were also established. Furthermore, the effect of coal enrichment was also investigated, and it was found that the enrichment process enabled the removal of up to 75% of the coal mercury from the samples.


2018 ◽  
Vol 15 (1) ◽  
pp. 21-26
Author(s):  
Joseph Adewumi Oyebanji ◽  
Sunday Olayinka Oyedepo

Purpose This study aims to investigate the effect of reactor temperature on softwood and hardwood pyrolysis. Experiments are performed at six temperature levels ranging from 300 to 800°C under N2 atmosphere. The weights of char, tar and gas yields produced were measured and recorded in percentage of initial weight of the pyrolyzed samples. Results of the study showed that hardwood produces maximum char, tar and gas yields of 41.02 per cent at 300°C,44.10 per cent at 300°C and 56.86 per cent at 800°C, respectively, whereas softwood produces maximum yields of 30.10 per cent at 300°C, 28.25 per cent at 300°C and 68.73 per cent at 800°C, respectively. Proximate analysis shows that volatile matter, fixed carbon, ash content and moisture content of hardwood are 74.83, 14.28, 2.81 and 8.08 per cent, respectively, and that of softwood are 79.76, 12.65, 0.98 and 6.61 per cent, respectively. Result of the elemental analysis results shows that the carbon, hydrogen, nitrogen, oxygen and sulphur contents for hardwood are 52.20, 6.45, 0.68, 39.64 and 1.03 per cent, respectively, and that of softwood are 45.95, 4.57, 0.56, 48.13 and 0.79 per cent, respectively. The higher heating value of hardwood and softwood are 21.76 and 16.50 kJ/g respectively. This study shows that char and tar yields decrease with increase pyrolysis temperature, whereas gas yield increases as pyrolysis temperature increases for the wood samples considered. At all temperatures considered in this study, gas yields are higher than tar and char yields for softwood, whereas for hardwood, tar yield decreases with increase in temperature with accompanying increase in gas yield. Design/methodology/approach Experiments are performed at six temperature levels ranging from 300 to 800°C under N2 atmosphere. Findings At all temperatures considered in this study, gas yields are higher than tar and char yields for softwood, whereas for hardwood, tar yield decreases with increase in temperature with accompanying increase in gas yield. Originality/value Results of the study showed that hardwood produces maximum char, tar and gas yields of 41.02 per cent at 300°C,44.10 per cent at 300°C and 56.86 per cent at 800°C, respectively, whereas softwood produces maximum yields of 30.10 per cent at 300°C, 28.25 per cent at 300°C and 68.73 per cent at 800°C, respectively.


Author(s):  
J. M. Makavana ◽  
P. N. Sarsavadia ◽  
P. M. Chauhan

Bio-char is carbon-rich product generated from biomass through batch type slow pyrolysis. In this study, the effects of pyrolysis temperature and residence time on the yield and properties of bio-chars obtained from shredded cotton stalks were investigated. Safely said that the quality of bio-char of shredded cotton stalk obtained at 500°C temperature and 240 min is best out of the all experimental levels of variables of temperature and residence time. At this temperature and residence time, the quality of bio-char in terms higher heating value (8101.3cal /g or 33.89 MJ/kg), nitrogen (1.56%), Carbon (79.30%), and C/N ratio (50.83) respectively. The quality of bio-char for various applications is discussed along with different quality parameters. The bio-char could be used for the production of activated carbon, in fuel applications, and water purification processes. Average bulk density of whole cotton stalk and shredded cotton stalk was found as 29.90 kg/m3 and 147.02 kg/m3 respectively. Thus density was increased by 3.91 times. The value of pH, EC and CEC of shredded cotton stalk biomass was found as 5.59, 0.03 dS/m and 38.84 cmol/kg respectively. Minimum and maximum values pH, EC and CEC of its bio-char was found as 5.85 to9.86, 0.04 to 0.10 dS/m and 38.02 to 24.39 cmol/kg at 200°C and 60 min and; 500°C and 240 min temperature and residence time respectively. Moisture content, ash content, volatile matter and fixed carbon of shredded cotton stalk biomass were found as, 12.5, 5.27, 80.22, and 14.51 (%, d.b) respectively. The minimum and maximum value of bio-char in terms of ash content, volatile matter and fixed carbon of bio-char were found as 5.5 to 15.56, 48.02 to 79.48 and 15.02 to 36.40 (%, d.b) respectively. Calorific value of cotton stalk biomass was found as 3685.3 cal /g. The minimum and maximum higher heating value of its bio-char was found as 4622.0 cal/ g and 8101.3 cal/g at 200°C and 60 min and; 500˚C and 240 min temperature and residence time.


2021 ◽  
Vol 921 (1) ◽  
pp. 012055
Author(s):  
R Rahman ◽  
B Azikin ◽  
D Tahir ◽  
S Widodo

Abstract This study using three types of coal from East Kalimantan and South Sulawesi Mangrove Wood Charcoal which consisted of various compositions. In sample analysis using analysis, namely: proximate, ultimate, and calorific value. Proximate analysis: ash content, volatile matter, moisture content, fixed carbon; ultimate analysis: carbon and sulfur content and the calorific value using the bomb calorimeter method. The results of the proximate analysis showed that the fixed carbon content was obtained in the mixture of MWC 75% + KJA 25% = 52.45%, while the lowest was obtained at IC 100% = 32.86%; The highest volatile matter was obtained at KJA 100% = 44.23%, the lowest was at MWC 75% + KJA 25% = 31.90%, the highest ash content was IC 100% = 9.14% the lowest was at MWC 75% + KJA 25% = 5.94% and the highest moisture content was seen at IC 100% = 15.17% but MWC 75% + IC 25% = 9.52%. The results of the ultimate analysis showed that the lowest sulfur content was in the mixed variation of MWC 75% + KJA 25% = 0.168%, while the highest sulfur content was obtained at IC 100% = 0.874%. However, it was still in the low sulfur category <1. The highest calorific value is obtained by varying the composition at MWC 75% + IC 25% = 5919 cal/gram, while the lowest was obtained at KJA 100% = 4913 cal/gram. So based on this research, the addition of mangrove charcoal is very good for increasing the calorific value.


Author(s):  
O. J. Lawal ◽  
T. A. Atanda ◽  
S. O. Ayanleye ◽  
E. A. Iyiola

The decreasing availability of fuel wood coupled with the increasing prices of kerosene and cooking gas in Nigeria has drawn attention on the need to consider alternative sources of energy for domestic and industrial use in the country. The study was undertaken to evaluate the combustion properties (percentage volatile matter, percentage ash content, percentage fixed carbon, heating value) of briquette produced from coconut husk and male inflorescence of Elaeis guineensis. The experiment was laid down using the Randomized Complete Block Design (RCBD). The study involves three particle sizes (2 mm each) of coconut husk, male inflorescence of oil palm tree and cassava starch used as binder. The coconut husk and male inflorescence of Elaeis guineensis were varied into (25:30:40:50:60) respectively and bound together with starch at same ratio. Proximate analysis was carried out to determine the constituent of the briquettes which include ash content, percentage fixed carbon, percentage volatile matter and experimental test to determine the heating value was also determined. All processing variables in this study were significantly different except for heating value at P>0.05. From the result of the percentage ash content, briquette produced from coconut husk, male inflorescence and starch at (20:20:60) has the least fixed carbon (6.5%) with better performance. The highest percentage volatile matter 74.6% was obtained from coconut husk, male inflorescence and starch at (20:20:60) while low fixed carbon (18.8%) was obtained from male inflorescence and starch at (60:40). In conclusion, large quantities of wastes generated in terms of coconut husk and male inflorescence which are disposed indiscriminately can be utilized to produce briquette with enhanced performance.


2012 ◽  
Vol 614-615 ◽  
pp. 69-72
Author(s):  
Qing Wang ◽  
Na Pei

In this research, experimental samples were from Maoming, Huadian, Wangqing, Fushun and Longkou regions in different layers and different mining area. The experimental results of oil shale proximate analysis and heating value measurement show that there are certain relations between proximate analysis of moisture, ash, fixed carbon, volatile matter and lower heating value. The relations between oil shale lower heating value and proximate analysis have important significance to estimate the average characteristics of oil shale as received and oil shale combustion conditions in boiler.


2020 ◽  
Vol 12 (24) ◽  
pp. 10437
Author(s):  
Asiphile Khanyile ◽  
Guy C. Caws ◽  
S’phumelele L. Nkomo ◽  
Ntandoyenkosi M. Mkhize

Seven disposable diaper brands that are commonly used in Clermont, Kwa-Zulu Natal (South Africa) and some frequently found along river bodies (due to illegal dumping) were characterised through proximate analysis, thermogravimetric analysis (TGA), ultimate analysis and analytical pyrolysis–gas chromatography/mass spectrometry (Py–GC/MS). A novel approach entailing separation of the diapers into two fractions, interior (constituting mainly biomass fibres) and exterior (mainly constituting non-biomass polyethylene), assisted in assessing thermochemical conversion of the disposable diaper’s potential as well as likely threats to the environment. In a comparison of the volatile matter between the two fractions, the exterior fraction is more combustible (due to a higher volatile fraction). Hence, it is more suitable for energy recovery. The present study investigates the use of pyrolysis to manage disposable diapers to potentially recover pyro-oil, pyro-gas and pyro-char. In this primary investigation, it was observed that each disposable diaper brand reacts differently to constant heating. However, the proximate and elemental analysis also highlights the likely negative environmental threats, such as that the high volatile content can potentially release dangerous permanent gases such as chlorine and cobalt into the atmosphere after the diaper is disposed of illegally and in landfill.


Sign in / Sign up

Export Citation Format

Share Document