scholarly journals Groundwater Storage Change Estimation Using Combination of Hydrogeophysical and Groundwater Table Fluctuation Methods in Hard Rock Aquifers

Resources ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 5 ◽  
Author(s):  
Mahamadou Koïta ◽  
Hamma Yonli ◽  
Donissongou Soro ◽  
Amagana Dara ◽  
Jean-Michel Vouillamoz
2021 ◽  
Author(s):  
Jesús Alberto Mézquita González ◽  
Jean-Christophe Comte

<p>Characterization of groundwater aquifers plays an important role in addressing the increasing demand for freshwater and low carbon energy. Specifically, hard rock aquifers that have been neglected in the past due to their overall low productivity, are increasingly recognised as important aquifers for local water supplies, sustaining environmental flows, and low enthalpy geothermal resources. Groundwater flow and, more so storage, in these aquifers are still poorly understood creating a necessity to quantify their properties and role in sustaining human and ecosystem needs. This study aims to quantify groundwater storage properties, and their spatial variability, in weathered/fractured hard rock aquifers using near-surface geophysical techniques and further evaluate the associated uncertainties. To do so, we analysed 2D electrical resistivity tomography (ERT) and induced polarization (IP) data in combination with 1D magnetic resonance sounding (MRS) and borehole geophysical logging from a metamorphic rock catchment in Gortinlieve, Ireland. The geophysical data comprised a challenging dataset that includes information at different resolution scales: a low-resolution ERT profile of 1,3 km of length, a high-resolution ERT+IP profile of 70 m of length, 8 MRS logs distributed along the study area, borehole logs (gamma ray, temperature and caliper) and petrological analysis at borehole locations. Aquifers storativity data derived from application of petrophysical model to the geophysical data showed good accuracy and reasonable uncertainty of estimated properties. ERT porosities derived from Archie´s model revealed that this model overestimates the porosity for the study site whereas estimates derived from the Waxman & Smits (WS) model, which accounts for the influence of the cation exchange capacity (CEC) of clay minerals on the ERT measurements, were closer to specific yield values obtained from pumping test in boreholes, MRS water content estimates and the typical ranges of hard rock aquifers. The superiority of WS over Archie demonstrated that the clay content cannot be neglected when characterizing storage properties in weathered/fractured basement rock aquifers. Water content profiles from MRS corroborated the results with a particularly good match at three locations across the study area characterised by deep weathering/fracturing associated with regional fracture zones. Results demonstrated that the methodology provides a reasonable estimate of storage heterogeneity which is consistent with weathering/fracturing patterns as described in accepted conceptual models of hard rock aquifers. To further challenge the ERT porosity models, we tested an alternative approach based on the differential effective medium (DEM) theory applied to time-domain IP data to recover CEC and porosity tomograms. Preliminary results show promise, through yielding porosity values close to both 2D WS porosities and 1D MRS water contents and, importantly, the approach may provide a mean to bypass the requirement for having direct clay data of the study site. Taken together, the results confirmed that near-surface geophysical techniques are key instruments to assess groundwater conditions in hard rock aquifers and quantify the spatial heterogeneity of their storage properties at larger scales. The approach can be applied in similar hard rock environments affected by weathering and fracturing.</p>


Author(s):  
Stefano Segadelli ◽  
Maria Filippini ◽  
Anna Monti ◽  
Fulvio Celico ◽  
Alessandro Gargini

AbstractEstimation of aquifer recharge is key to effective groundwater management and protection. In mountain hard-rock aquifers, the average annual discharge of a spring generally reflects the vertical aquifer recharge over the spring catchment. However, the determination of average annual spring discharge requires expensive and challenging field monitoring. A power-law correlation was previously reported in the literature that would allow quantification of the average annual spring discharge starting from only a few discharge measurements in the low-flow season, in a dry summer climate. The correlation is based upon the Maillet model and was previously derived by a 10-year monitoring program of discharge from springs and streams in hard-rock aquifers composed of siliciclastic and calcareous turbidites that did not have well defined hydrogeologic boundaries. In this research, the same correlation was applied to two ophiolitic (peridotitic) hard-rock aquifers in the Northern Apennines (Northern Italy) with well-defined hydrogeologic boundaries and base-outflow springs. The correlation provided a reliable estimate of the average annual spring discharge thus confirming its effectiveness regardless of bedrock lithology. In the two aquifers studied, the measurable annual outputs (i.e. sum of average annual spring discharges) could be assumed equal to the annual inputs (i.e. vertical recharge) based on the clear-cut aquifer boundaries and a quick groundwater circulation inferable from spring water parameters. Thus, in such setting, the aforementioned correlation also provided an estimate of the annual aquifer recharge allowing the assessment of coefficients of infiltration (i.e. ratio between aquifer recharge and total precipitation) ranging between 10 and 20%.


2021 ◽  
Author(s):  
Steven Reinaldo Rusli ◽  
Albrecht Weerts ◽  
Victor Bense

<p>In this study, we estimate the water balance components of a highly groundwater-dependent and hydrological data-scarce basin of the upper reaches of the Citarum river in West Java, Indonesia. Firstly, we estimate the groundwater abstraction volumes based on population size and a review of literature (0.57mm/day). Estimates of other components like rainfall, actual evaporation, discharge, and total water storage changes are derived from global datasets and are simulated using a distributed hydrological wflow_sbm model which yields additional estimates of discharge, actual evaporation, and total water storage change. We compare each basin water balance estimate as well as quantify the uncertainty of some of the components using the Extended Triple Collocation (ETC) method.</p><p>The ETC application on four different rainfall estimates suggests a preference of using the CHIRPS product as the input to the water balance components estimates as it delivers the highest r<sup>2</sup>  and the lowest RMSE compared to three other sources. From the different data sources and results of the distributed hydrological modeling using CHIRPS as rainfall forcing, we estimate a positive groundwater storage change between 0.12 mm/day - 0.60 mm/day. These results are in agreement with groundwater storage change estimates based upon GRACE gravimetric satellite data, averaged at 0.25 mm/day. The positive groundwater storage change suggests sufficient groundwater recharge occurs compensating for groundwater abstraction. This conclusion seems in agreement with the observation since 2005, although measured in different magnitudes. To validate and narrow the estimated ranges of the basin water storage changes, a devoted groundwater model is necessary to be developed. The result shall also aid in assessing the current and future basin-scale groundwater level changes to support operational water management and policy in the Upper Citarum basin.</p>


Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Wenjie Yin ◽  
Litang Hu ◽  
Jiu Jimmy Jiao

Dynamic change of groundwater storage is one of the most important topics in the sustainable management of groundwater resources. Groundwater storage variations are firstly isolated from the terrestrial water storage change using the Global Land Data Assimilation System (GLDAS). Two datasets are used: (1) annual groundwater resources and (2) groundwater storage changes estimated from point-based groundwater level data in observation wells. Results show that the match between the GRACE-derived groundwater storage variations and annual water resources variation is not good in six river basins of Northern China. However, it is relatively good between yearly GRACE-derived groundwater storage data and groundwater storage change dataset in Huang-Huai-Hai Plain and the Song-Liao Plain. The mean annual depletion rate of groundwater storage in the Northern China was approximately 1.70 billion m3 yr−1 from 2003 to 2012. In terms of provinces, the yearly depletion rate is higher in Jing-Jin-Ji (Beijing, Tianjin, and Hebei province) and lowest in Henan province from 2003 to 2012, with the rate of 0.70 and 0.21 cm yr−1 Equivalent Water Height (EWH), respectively. Different land surface models suggest that the patterns from different models almost remain the same, and soil moisture variations are generally bigger than snow water equivalent variations.


2012 ◽  
Vol 6 (11) ◽  
pp. 4167-4177 ◽  
Author(s):  
C. Singaraja ◽  
S. Chidambaram ◽  
P. Anandhan ◽  
M. V. Prasanna ◽  
C. Thivya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document