scholarly journals Alleviating Class Imbalance in Actuarial Applications Using Generative Adversarial Networks

Risks ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 49
Author(s):  
Kwanda Sydwell Ngwenduna ◽  
Rendani Mbuvha

To build adequate predictive models, a substantial amount of data is desirable. However, when expanding to new or unexplored territories, this required level of information is rarely always available. To build such models, actuaries often have to: procure data from local providers, use limited unsuitable industry and public research, or rely on extrapolations from other better-known markets. Another common pathology when applying machine learning techniques in actuarial domains is the prevalence of imbalanced classes where risk events of interest, such as mortality and fraud, are under-represented in data. In this work, we show how an implicit model using the Generative Adversarial Network (GAN) can alleviate these problems through the generation of adequate quality data from very limited or highly imbalanced samples. We provide an introduction to GANs and how they are used to synthesize data that accurately enhance the data resolution of very infrequent events and improve model robustness. Overall, we show a significant superiority of GANs for boosting predictive models when compared to competing approaches on benchmark data sets. This work offers numerous of contributions to actuaries with applications to inter alia new sample creation, data augmentation, boosting predictive models, anomaly detection, and missing data imputation.

2021 ◽  
pp. 147592172110219
Author(s):  
Huachen Jiang ◽  
Chunfeng Wan ◽  
Kang Yang ◽  
Youliang Ding ◽  
Songtao Xue

Wireless sensors are the key components of structural health monitoring systems. During the signal transmission, sensor failure is inevitable, among which, data loss is the most common type. Missing data problem poses a huge challenge to the consequent damage detection and condition assessment, and therefore, great importance should be attached. Conventional missing data imputation basically adopts the correlation-based method, especially for strain monitoring data. However, such methods often require delicate model selection, and the correlations for vehicle-induced strains are much harder to be captured compared with temperature-induced strains. In this article, a novel data-driven generative adversarial network (GAN) for imputing missing strain response is proposed. As opposed to traditional ways where correlations for inter-strains are explicitly modeled, the proposed method directly imputes the missing data considering the spatial–temporal relationships with other strain sensors based on the remaining observed data. Furthermore, the intact and complete dataset is not even necessary during the training process, which shows another great superiority over the model-based imputation method. The proposed method is implemented and verified on a real concrete bridge. In order to demonstrate the applicability and robustness of the GAN, imputation for single and multiple sensors is studied. Results show the proposed method provides an excellent performance of imputation accuracy and efficiency.


Author(s):  
Arash Shilandari ◽  
Hossein Marvi ◽  
Hossein Khosravi

Nowadays, and with the mechanization of life, speech processing has become so crucial for the interaction between humans and machines. Deep neural networks require a database with enough data for training. The more features are extracted from the speech signal, the more samples are needed to train these networks. Adequate training of these networks can be ensured when there is access to sufficient and varied data in each class. If there is not enough data; it is possible to use data augmentation methods to obtain a database with enough samples. One of the obstacles to developing speech emotion recognition systems is the Data sparsity problem in each class for neural network training. The current study has focused on making a cycle generative adversarial network for data augmentation in a system for speech emotion recognition. For each of the five emotions employed, an adversarial generating network is designed to generate data that is very similar to the main data in that class, as well as differentiate the emotions of the other classes. These networks are taught in an adversarial way to produce feature vectors like each class in the space of the main feature, and then they add to the training sets existing in the database to train the classifier network. Instead of using the common cross-entropy error to train generative adversarial networks and to remove the vanishing gradient problem, Wasserstein Divergence has been used to produce high-quality artificial samples. The suggested network has been tested to be applied for speech emotion recognition using EMODB as training, testing, and evaluating sets, and the quality of artificial data evaluated using two Support Vector Machine (SVM) and Deep Neural Network (DNN) classifiers. Moreover, it has been revealed that extracting and reproducing high-level features from acoustic features, speech emotion recognition with separating five primary emotions has been done with acceptable accuracy.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Khaled Almezhghwi ◽  
Sertan Serte

White blood cells (leukocytes) are a very important component of the blood that forms the immune system, which is responsible for fighting foreign elements. The five types of white blood cells include neutrophils, eosinophils, lymphocytes, monocytes, and basophils, where each type constitutes a different proportion and performs specific functions. Being able to classify and, therefore, count these different constituents is critical for assessing the health of patients and infection risks. Generally, laboratory experiments are used for determining the type of a white blood cell. The staining process and manual evaluation of acquired images under the microscope are tedious and subject to human errors. Moreover, a major challenge is the unavailability of training data that cover the morphological variations of white blood cells so that trained classifiers can generalize well. As such, this paper investigates image transformation operations and generative adversarial networks (GAN) for data augmentation and state-of-the-art deep neural networks (i.e., VGG-16, ResNet, and DenseNet) for the classification of white blood cells into the five types. Furthermore, we explore initializing the DNNs’ weights randomly or using weights pretrained on the CIFAR-100 dataset. In contrast to other works that require advanced image preprocessing and manual feature extraction before classification, our method works directly with the acquired images. The results of extensive experiments show that the proposed method can successfully classify white blood cells. The best DNN model, DenseNet-169, yields a validation accuracy of 98.8%. Particularly, we find that the proposed approach outperforms other methods that rely on sophisticated image processing and manual feature engineering.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mingyu Kim ◽  
Sungchul Kim ◽  
Minjee Kim ◽  
Hyun-Jin Bae ◽  
Jae-Woo Park ◽  
...  

AbstractRealistic image generation is valuable in dental medicine, but still challenging for generative adversarial networks (GANs), which require large amounts of data to overcome the training instability. Thus, we generated lateral cephalogram X-ray images using a deep-learning-based progressive growing GAN (PGGAN). The quality of generated images was evaluated by three methods. First, signal-to-noise ratios of real/synthesized images, evaluated at the posterior arch region of the first cervical vertebra, showed no statistically significant difference (t-test, p = 0.211). Second, the results of an image Turing test, conducted by non-orthodontists and orthodontists for 100 randomly chosen images, indicated that they had difficulty in distinguishing whether the image was real or synthesized. Third, cephalometric tracing with 42 landmark points detection, performed on real and synthesized images by two expert orthodontists, showed consistency with mean difference of 2.08 ± 1.02 mm. Furthermore, convolutional neural network-based classification tasks were used to classify skeletal patterns using a real dataset with class imbalance and a dataset balanced with synthesized images. The classification accuracy for the latter case was increased by 1.5%/3.3% at internal/external test sets, respectively. Thus, the cephalometric images generated by PGGAN are sufficiently realistic and have potential to application in various fields of dental medicine.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Yu Chen ◽  
Jun Long ◽  
Jifeng Guo

Diabetic retinopathy (DR) is a diabetic complication affecting the eyes, which is the main cause of blindness in young and middle-aged people. In order to speed up the diagnosis of DR, a mass of deep learning methods have been used for the detection of this disease, but they failed to attain excellent results due to unbalanced training data, i.e., the lack of DR fundus images. To address the problem of data imbalance, this paper proposes a method dubbed retinal fundus images generative adversarial networks (RF-GANs), which is based on generative adversarial network, to synthesize retinal fundus images. RF-GANs is composed of two generation models, RF-GAN1 and RF-GAN2. Firstly, RF-GAN1 is employed to translate retinal fundus images from source domain (the domain of semantic segmentation datasets) to target domain (the domain of EyePACS dataset connected to Kaggle (EyePACS)). Then, we train the semantic segmentation models with the translated images, and employ the trained models to extract the structural and lesion masks (hereafter, we refer to it as Masks) of EyePACS. Finally, we employ RF-GAN2 to synthesize retinal fundus images using the Masks and DR grading labels. This paper verifies the effectiveness of the method: RF-GAN1 can narrow down the domain gap between different datasets to improve the performance of the segmentation models. RF-GAN2 can synthesize realistic retinal fundus images. Adopting the synthesized images for data augmentation, the accuracy and quadratic weighted kappa of the state-of-the-art DR grading model on the testing set of EyePACS increase by 1.53% and 1.70%, respectively.


2021 ◽  
Vol 14 (7) ◽  
pp. 1202-1214
Author(s):  
Tongyu Liu ◽  
Ju Fan ◽  
Yinqing Luo ◽  
Nan Tang ◽  
Guoliang Li ◽  
...  

Real-world data is dirty, which causes serious problems in (supervised) machine learning (ML). The widely used practice in such scenario is to first repair the labeled source (a.k.a. train) data using rule-, statistical- or ML-based methods and then use the "repaired" source to train an ML model. During production, unlabeled target (a.k.a. test) data will also be repaired, and is then fed in the trained ML model for prediction. However, this process often causes a performance degradation when the source and target datasets are dirty with different noise patterns , which is common in practice. In this paper, we propose an adaptive data augmentation approach, for handling missing data in supervised ML. The approach extracts noise patterns from target data, and adapts the source data with the extracted target noise patterns while still preserving supervision signals in the source. Then, it patches the ML model by retraining it on the adapted data, in order to better serve the target. To effectively support adaptive data augmentation, we propose a novel generative adversarial network (GAN) based framework, called DAGAN, which works in an unsupervised fashion. DAGAN consists of two connected GAN networks. The first GAN learns the noise pattern from the target, for target mask generation. The second GAN uses the learned target mask to augment the source data, for source data adaptation. The augmented source data is used to retrain the ML model. Extensive experiments show that our method significantly improves the ML model performance and is more robust than the state-of-the-art missing data imputation solutions for handling datasets with different missing value patterns.


2021 ◽  
Vol 15 ◽  
Author(s):  
Guangcheng Bao ◽  
Bin Yan ◽  
Li Tong ◽  
Jun Shu ◽  
Linyuan Wang ◽  
...  

One of the greatest limitations in the field of EEG-based emotion recognition is the lack of training samples, which makes it difficult to establish effective models for emotion recognition. Inspired by the excellent achievements of generative models in image processing, we propose a data augmentation model named VAE-D2GAN for EEG-based emotion recognition using a generative adversarial network. EEG features representing different emotions are extracted as topological maps of differential entropy (DE) under five classical frequency bands. The proposed model is designed to learn the distributions of these features for real EEG signals and generate artificial samples for training. The variational auto-encoder (VAE) architecture can learn the spatial distribution of the actual data through a latent vector, and is introduced into the dual discriminator GAN to improve the diversity of the generated artificial samples. To evaluate the performance of this model, we conduct a systematic test on two public emotion EEG datasets, the SEED and the SEED-IV. The obtained recognition accuracy of the method using data augmentation shows as 92.5 and 82.3%, respectively, on the SEED and SEED-IV datasets, which is 1.5 and 3.5% higher than that of methods without using data augmentation. The experimental results show that the artificial samples generated by our model can effectively enhance the performance of the EEG-based emotion recognition.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kazuma Kokomoto ◽  
Rena Okawa ◽  
Kazuhiko Nakano ◽  
Kazunori Nozaki

AbstractDentists need experience with clinical cases to practice specialized skills. However, the need to protect patient's private information limits their ability to utilize intraoral images obtained from clinical cases. In this study, since generating realistic images could make it possible to utilize intraoral images, progressive growing of generative adversarial networks are used to generate intraoral images. A total of 35,254 intraoral images were used as training data with resolutions of 128 × 128, 256 × 256, 512 × 512, and 1024 × 1024. The results of the training datasets with and without data augmentation were compared. The Sliced Wasserstein Distance was calculated to evaluate the generated images. Next, 50 real images and 50 generated images for each resolution were randomly selected and shuffled. 12 pediatric dentists were asked to observe these images and assess whether they were real or generated. The d prime of the 1024 × 1024 images was significantly higher than that of the other resolutions. In conclusion, generated intraoral images with resolutions of 512 × 512 or lower were so realistic that the dentists could not distinguish whether they were real or generated. This implies that the generated images can be used in dental education or data augmentation for deep learning, without privacy restrictions.


2021 ◽  
Vol 11 (21) ◽  
pp. 10224
Author(s):  
Hsu-Yung Cheng ◽  
Chih-Chang Yu

In this paper, a framework based on generative adversarial networks is proposed to perform nature-scenery generation according to descriptions from the users. The desired place, time and seasons of the generated scenes can be specified with the help of text-to-image generation techniques. The framework improves and modifies the architecture of a generative adversarial network with attention models by adding the imagination models. The proposed attentional and imaginative generative network uses the hidden layer information to initialize the memory cell of the recurrent neural network to produce the desired photos. A data set containing different categories of scenery images is established to train the proposed system. The experiments validate that the proposed method is able to increase the quality and diversity of the generated images compared to the existing method. A possible application of road image generation for data augmentation is also demonstrated in the experimental results.


Sign in / Sign up

Export Citation Format

Share Document