scholarly journals RF-GANs: A Method to Synthesize Retinal Fundus Images Based on Generative Adversarial Network

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Yu Chen ◽  
Jun Long ◽  
Jifeng Guo

Diabetic retinopathy (DR) is a diabetic complication affecting the eyes, which is the main cause of blindness in young and middle-aged people. In order to speed up the diagnosis of DR, a mass of deep learning methods have been used for the detection of this disease, but they failed to attain excellent results due to unbalanced training data, i.e., the lack of DR fundus images. To address the problem of data imbalance, this paper proposes a method dubbed retinal fundus images generative adversarial networks (RF-GANs), which is based on generative adversarial network, to synthesize retinal fundus images. RF-GANs is composed of two generation models, RF-GAN1 and RF-GAN2. Firstly, RF-GAN1 is employed to translate retinal fundus images from source domain (the domain of semantic segmentation datasets) to target domain (the domain of EyePACS dataset connected to Kaggle (EyePACS)). Then, we train the semantic segmentation models with the translated images, and employ the trained models to extract the structural and lesion masks (hereafter, we refer to it as Masks) of EyePACS. Finally, we employ RF-GAN2 to synthesize retinal fundus images using the Masks and DR grading labels. This paper verifies the effectiveness of the method: RF-GAN1 can narrow down the domain gap between different datasets to improve the performance of the segmentation models. RF-GAN2 can synthesize realistic retinal fundus images. Adopting the synthesized images for data augmentation, the accuracy and quadratic weighted kappa of the state-of-the-art DR grading model on the testing set of EyePACS increase by 1.53% and 1.70%, respectively.

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Khaled Almezhghwi ◽  
Sertan Serte

White blood cells (leukocytes) are a very important component of the blood that forms the immune system, which is responsible for fighting foreign elements. The five types of white blood cells include neutrophils, eosinophils, lymphocytes, monocytes, and basophils, where each type constitutes a different proportion and performs specific functions. Being able to classify and, therefore, count these different constituents is critical for assessing the health of patients and infection risks. Generally, laboratory experiments are used for determining the type of a white blood cell. The staining process and manual evaluation of acquired images under the microscope are tedious and subject to human errors. Moreover, a major challenge is the unavailability of training data that cover the morphological variations of white blood cells so that trained classifiers can generalize well. As such, this paper investigates image transformation operations and generative adversarial networks (GAN) for data augmentation and state-of-the-art deep neural networks (i.e., VGG-16, ResNet, and DenseNet) for the classification of white blood cells into the five types. Furthermore, we explore initializing the DNNs’ weights randomly or using weights pretrained on the CIFAR-100 dataset. In contrast to other works that require advanced image preprocessing and manual feature extraction before classification, our method works directly with the acquired images. The results of extensive experiments show that the proposed method can successfully classify white blood cells. The best DNN model, DenseNet-169, yields a validation accuracy of 98.8%. Particularly, we find that the proposed approach outperforms other methods that rely on sophisticated image processing and manual feature engineering.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kazuma Kokomoto ◽  
Rena Okawa ◽  
Kazuhiko Nakano ◽  
Kazunori Nozaki

AbstractDentists need experience with clinical cases to practice specialized skills. However, the need to protect patient's private information limits their ability to utilize intraoral images obtained from clinical cases. In this study, since generating realistic images could make it possible to utilize intraoral images, progressive growing of generative adversarial networks are used to generate intraoral images. A total of 35,254 intraoral images were used as training data with resolutions of 128 × 128, 256 × 256, 512 × 512, and 1024 × 1024. The results of the training datasets with and without data augmentation were compared. The Sliced Wasserstein Distance was calculated to evaluate the generated images. Next, 50 real images and 50 generated images for each resolution were randomly selected and shuffled. 12 pediatric dentists were asked to observe these images and assess whether they were real or generated. The d prime of the 1024 × 1024 images was significantly higher than that of the other resolutions. In conclusion, generated intraoral images with resolutions of 512 × 512 or lower were so realistic that the dentists could not distinguish whether they were real or generated. This implies that the generated images can be used in dental education or data augmentation for deep learning, without privacy restrictions.


Author(s):  
Huilin Zhou ◽  
Huimin Zheng ◽  
Qiegen Liu ◽  
Jian Liu ◽  
Yuhao Wang

Abstract Electromagnetic inverse-scattering problems (ISPs) are concerned with determining the properties of an unknown object using measured scattered fields. ISPs are often highly nonlinear, causing the problem to be very difficult to address. In addition, the reconstruction images of different optimization methods are distorted which leads to inaccurate reconstruction results. To alleviate these issues, we propose a new linear model solution of generative adversarial network-based (LM-GAN) inspired by generative adversarial networks (GAN). Two sub-networks are trained alternately in the adversarial framework. A linear deep iterative network as a generative network captures the spatial distribution of the data, and a discriminative network estimates the probability of a sample from the training data. Numerical results validate that LM-GAN has admirable fidelity and accuracy when reconstructing complex scatterers.


2021 ◽  
Vol 263 (2) ◽  
pp. 4558-4564
Author(s):  
Minghong Zhang ◽  
Xinwei Luo

Underwater acoustic target recognition is an important aspect of underwater acoustic research. In recent years, machine learning has been developed continuously, which is widely and effectively applied in underwater acoustic target recognition. In order to acquire good recognition results and reduce the problem of overfitting, Adequate data sets are essential. However, underwater acoustic samples are relatively rare, which has a certain impact on recognition accuracy. In this paper, in addition of the traditional audio data augmentation method, a new method of data augmentation using generative adversarial network is proposed, which uses generator and discriminator to learn the characteristics of underwater acoustic samples, so as to generate reliable underwater acoustic signals to expand the training data set. The expanded data set is input into the deep neural network, and the transfer learning method is applied to further reduce the impact caused by small samples by fixing part of the pre-trained parameters. The experimental results show that the recognition result of this method is better than the general underwater acoustic recognition method, and the effectiveness of this method is verified.


Author(s):  
S. M. Tilon ◽  
F. Nex ◽  
D. Duarte ◽  
N. Kerle ◽  
G. Vosselman

Abstract. Degradation and damage detection provides essential information to maintenance workers in routine monitoring and to first responders in post-disaster scenarios. Despite advance in Earth Observation (EO), image analysis and deep learning techniques, the quality and quantity of training data for deep learning is still limited. As a result, no robust method has been found yet that can transfer and generalize well over a variety of geographic locations and typologies of damages. Since damages can be seen as anomalies, occurring sparingly over time and space, we propose to use an anomaly detecting Generative Adversarial Network (GAN) to detect damages. The main advantages of using GANs are that only healthy unannotated images are needed, and that a variety of damages, including the never before seen damage, can be detected. In this study we aimed to investigate 1) the ability of anomaly detecting GANs to detect degradation (potholes and cracks) in asphalt road infrastructures using Mobile Mapper imagery and building damage (collapsed buildings, rubble piles) using post-disaster aerial imagery, and 2) the sensitivity of this method against various types of pre-processing. Our results show that we can detect damages in urban scenes at satisfying levels but not on asphalt roads. Future work will investigate how to further classify the found damages and how to improve damage detection for asphalt roads.


2020 ◽  
Vol 11 ◽  
Author(s):  
Luning Bi ◽  
Guiping Hu

Traditionally, plant disease recognition has mainly been done visually by human. It is often biased, time-consuming, and laborious. Machine learning methods based on plant leave images have been proposed to improve the disease recognition process. Convolutional neural networks (CNNs) have been adopted and proven to be very effective. Despite the good classification accuracy achieved by CNNs, the issue of limited training data remains. In most cases, the training dataset is often small due to significant effort in data collection and annotation. In this case, CNN methods tend to have the overfitting problem. In this paper, Wasserstein generative adversarial network with gradient penalty (WGAN-GP) is combined with label smoothing regularization (LSR) to improve the prediction accuracy and address the overfitting problem under limited training data. Experiments show that the proposed WGAN-GP enhanced classification method can improve the overall classification accuracy of plant diseases by 24.4% as compared to 20.2% using classic data augmentation and 22% using synthetic samples without LSR.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6269
Author(s):  
Augusto Luis Ballardini ◽  
Álvaro Hernández Saz ◽  
Sandra Carrasco Limeros ◽  
Javier Lorenzo ◽  
Ignacio Parra Alonso ◽  
...  

Understanding the scene in front of a vehicle is crucial for self-driving vehicles and Advanced Driver Assistance Systems, and in urban scenarios, intersection areas are one of the most critical, concentrating between 20% to 25% of road fatalities. This research presents a thorough investigation on the detection and classification of urban intersections as seen from onboard front-facing cameras. Different methodologies aimed at classifying intersection geometries have been assessed to provide a comprehensive evaluation of state-of-the-art techniques based on Deep Neural Network (DNN) approaches, including single-frame approaches and temporal integration schemes. A detailed analysis of most popular datasets previously used for the application together with a comparison with ad hoc recorded sequences revealed that the performances strongly depend on the field of view of the camera rather than other characteristics or temporal-integrating techniques. Due to the scarcity of training data, a new dataset is created by performing data augmentation from real-world data through a Generative Adversarial Network (GAN) to increase generalizability as well as to test the influence of data quality. Despite being in the relatively early stages, mainly due to the lack of intersection datasets oriented to the problem, an extensive experimental activity has been performed to analyze the individual performance of each proposed systems.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5479 ◽  
Author(s):  
Maryam Rahnemoonfar ◽  
Jimmy Johnson ◽  
John Paden

Significant resources have been spent in collecting and storing large and heterogeneous radar datasets during expensive Arctic and Antarctic fieldwork. The vast majority of data available is unlabeled, and the labeling process is both time-consuming and expensive. One possible alternative to the labeling process is the use of synthetically generated data with artificial intelligence. Instead of labeling real images, we can generate synthetic data based on arbitrary labels. In this way, training data can be quickly augmented with additional images. In this research, we evaluated the performance of synthetically generated radar images based on modified cycle-consistent adversarial networks. We conducted several experiments to test the quality of the generated radar imagery. We also tested the quality of a state-of-the-art contour detection algorithm on synthetic data and different combinations of real and synthetic data. Our experiments show that synthetic radar images generated by generative adversarial network (GAN) can be used in combination with real images for data augmentation and training of deep neural networks. However, the synthetic images generated by GANs cannot be used solely for training a neural network (training on synthetic and testing on real) as they cannot simulate all of the radar characteristics such as noise or Doppler effects. To the best of our knowledge, this is the first work in creating radar sounder imagery based on generative adversarial network.


2020 ◽  
Vol 10 (7) ◽  
pp. 2628 ◽  
Author(s):  
Hyeon Kang ◽  
Jang-Sik Park ◽  
Kook Cho ◽  
Do-Young Kang

Conventional data augmentation (DA) techniques, which have been used to improve the performance of predictive models with a lack of balanced training data sets, entail an effort to define the proper repeating operation (e.g., rotation and mirroring) according to the target class distribution. Although DA using generative adversarial network (GAN) has the potential to overcome the disadvantages of conventional DA, there are not enough cases where this technique has been applied to medical images, and in particular, not enough cases where quantitative evaluation was used to determine whether the generated images had enough realism and diversity to be used for DA. In this study, we synthesized 18F-Florbetaben (FBB) images using CGAN. The generated images were evaluated using various measures, and we presented the state of the images and the similarity value of quantitative measurement that can be expected to successfully augment data from generated images for DA. The method includes (1) conditional WGAN-GP to learn the axial image distribution extracted from pre-processed 3D FBB images, (2) pre-trained DenseNet121 and model-agnostic metrics for visual and quantitative measurements of generated image distribution, and (3) a machine learning model for observing improvement in generalization performance by generated dataset. The Visual Turing test showed similarity in the descriptions of typical patterns of amyloid deposition for each of the generated images. However, differences in similarity and classification performance per axial level were observed, which did not agree with the visual evaluation. Experimental results demonstrated that quantitative measurements were able to detect the similarity between two distributions and observe mode collapse better than the Visual Turing test and t-SNE.


Sign in / Sign up

Export Citation Format

Share Document