scholarly journals Connection of the Photochemical Reflectance Index (PRI) with the Photosystem II Quantum Yield and Nonphotochemical Quenching Can Be Dependent on Variations of Photosynthetic Parameters among Investigated Plants: A Meta-Analysis

2018 ◽  
Vol 10 (5) ◽  
pp. 771 ◽  
Author(s):  
Ekaterina Sukhova ◽  
Vladimir Sukhov
2019 ◽  
Vol 124 ◽  
pp. 104852 ◽  
Author(s):  
Ananda Y. Bandara ◽  
Dilooshi K. Weerasooriya ◽  
Tesfaye T. Tesso ◽  
Christopher R. Little

2009 ◽  
Vol 21 (3) ◽  
pp. 167-174 ◽  
Author(s):  
Cleber Cunha Figueredo ◽  
Alessandra Giani ◽  
José Pires Lemos Filho

During photosynthesis, absorbed energy that is not used in photochemical reactions dissipates as fluorescence. Fluorescence provides important information on the physiological conditions of the studied organisms and its measurement is widely used by plant physiologists and can be valuable in phytoplankton studies. We describe a method adapting a plant fluorometric equipment to measure the photosynthetic capacity of microalgae. Unialgal cultures of three planktonic chlorophytes were exposed to 3(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), an inhibitor of photosystem II, at concentrations of 0.1, 1.0 and 10.0 µmol.L-1. Estimates were made of photosynthetic parameters, including operational and potential photosystem II quantum yield and electron transport rate between photosystems, using algal cells concentrated on glass-fiber filters. The technique allowed reliable measurements of fluorescence, and detection of distinct levels of inhibition. Physiological or morphological characteristics of the selected species might provide an explanation for the observed results: differences on the surface/volume ratio of the cells and colony morphology, for example, were associated with contrasting resistance to the toxicant. To characterize inhibition on phytoplanktonic photosynthesis, we suggest operational quantum yield and electron transport rate as best parameters, once they were more sensitive to the DCMU toxicity.


2019 ◽  
Vol 46 (4) ◽  
pp. 328 ◽  
Author(s):  
Vladimir Sukhov ◽  
Ekaterina Sukhova ◽  
Ekaterina Gromova ◽  
Lyubov Surova ◽  
Vladimir Nerush ◽  
...  

Plants can be affected by numerous environmental stressors with spatially heterogeneous actions on their bodies. A fast systemic photosynthetic response, which is connected with long-distance electrical signalling, plays an important role in the adaptation of higher plants to the action of stressors. Potentially, measurement of the response by using a photochemical reflectance index (PRI) could be the basis of monitoring photosynthesis under spatially heterogeneous stressors; however, the method has not been previously used for investigating the systemic photosynthetic response. We investigated changes in PRI and photosynthetic parameters (quantum yields of PSI and PSII and nonphotochemical quenching) in intact leaves of pea (Pisum sativum L.) after local heating of another leaf and the propagation of electrical signals through the plant body. We showed that electrical signals decreased the quantum yields of PSI and PSII and increased the nonphotochemical quenching of intact leaves in times ranging from minutes to tens of minutes; the changes were strongly connected with changes in PRI. Additional analysis showed that changes in PRI were caused by an increase of the energy-dependent quenching induced by electrical signals. Thus PRI can be potentially used for monitoring the systemic photosynthetic response connected with long-distance electrical signalling.


Sign in / Sign up

Export Citation Format

Share Document